RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259728
Palladium-Catalyzed Monoarylation of Aryl Amine with Aryl Tosylates
Publikationsverlauf
Publikationsdatum:
10. März 2011 (online)

Abstract
The bulky and electron-rich MOP-type ligand was efficient for the Pd-catalyzed amination of aryl tosylates. The in situ generated Pd(0) was a more efficient catalyst precursor than Pd(dba)2. In the presence of Pd(OAc)2, PhB(OH)2, and a hindered and electron-rich MOP-type ligand, a variety of primary aryl amines reacted with various aryl tosylates to form the corresponding secondary aryl amines in high yields with high selectivity. Furthermore, the catalyst system was also efficient for the arylation of indoles and hydrazones with aryl tosylates.
Key words
palladium - ligand - monoarylation - aryl tosylate - aryl amine
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Schlummer B.Scholz U. Adv. Synth. Catal. 2004, 346: 1599Reference Ris Wihthout Link - 1b
Hartwig JF. In Handbook of Organopalladium Chemistry for Organopalladium Chemistry of Organic Synthesis Vol. 1: Wiley-Interscience; New York: 2002. p.1051Reference Ris Wihthout Link - 1c
Muci A.Buchwald SL. Top. Curr. Chem. 2002, 219: 131Reference Ris Wihthout Link - 2a
Hartwig JF. Acc. Chem. Res. 2008, 41: 1534Reference Ris Wihthout Link - 2b
Ikawa T.Barder TE.Biscoe MR.Buchwald SL. J. Am. Chem. Soc. 2007, 129: 13001Reference Ris Wihthout Link - 2c
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176Reference Ris Wihthout Link - 2d
Christmann U.Vilar R. Angew. Chem. Int. Ed. 2005, 44: 366Reference Ris Wihthout Link - 3
Munday RH.Martinelli JR.Buchwald SL. J. Am. Chem. Soc. 2008, 130: 2754 - 4a
Jutand A.Hii KKM.Thornton-Pett M.Brown JM. Organometallics 1999, 18: 5367Reference Ris Wihthout Link - 4b
Alcazar-Roman LM.Hartwig JF.Liable-Sands LM.Guzei IA.
J. Am. Chem. Soc. 2000, 122: 4618Reference Ris Wihthout Link - 4c
Alcazar-Roman LM.Hartwig JF. Organometallics 2002, 21: 491Reference Ris Wihthout Link - 4d
Roy AH.Hartwig JF. J. Am. Chem. Soc. 2003, 125: 8704Reference Ris Wihthout Link - 5
Hamann BC.Hartwig JF. J. Am. Chem. Soc. 1998, 120: 7369 - For C-N bond formation, see:
- 6a
Klapars A.Campos KR.Chen C.Volante RP. Org. Lett. 2005, 7: 1185Reference Ris Wihthout Link - 6b
Huang X.Anderson KW.Zim D.Jiang L.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 6653Reference Ris Wihthout Link - 6c
Vo GD.Hartwig JF. J. Am. Chem. Soc. 2009, 131: 11049Reference Ris Wihthout Link - For C-C bond formation:
- 6d
Ackermann L.Althammer A.Fenner S. Angew. Chem. Int. Ed. 2009, 48: 201Reference Ris Wihthout Link - 6e
Gooßen LJ.Rodríguea N.Lange PP.Linder C. Angew. Chem. Int. Ed. 2010, 49: 111Reference Ris Wihthout Link - 6f
Choy PY.Chow WK.So CM.Lau CP.Kwong FY. Chem. Eur. J. 2010, 16: 9982Reference Ris Wihthout Link - 6g
Pschierer J.Plenio H. Eur. J. Org. Chem. 2010, 2934Reference Ris Wihthout Link - 6h
Munday RH.Martnelli JR.Buchwald SL. J. Am. Chem. Soc. 2008, 130: 2754Reference Ris Wihthout Link - 6i
Zhang L.Wu J. J. Am. Chem. Soc. 2008, 130: 12250Reference Ris Wihthout Link - 6j
Bhayana B.Fors B.Buchwald SL. Org. Lett. 2009, 11: 3954Reference Ris Wihthout Link - 7
Ogata T.Hartwig JF. J. Am. Chem. Soc. 2008, 130: 13848 - 8
Xie X.Zhang TY.Zhang Z. J. Org. Chem. 2006, 71: 6522 - 9
Belfield AJ.Brown GR.Foubister AJ. Tetrahedron 1999, 55: 11399 - 10
Buchwald SL.Mauger C.Mignani G.Scholz U. Adv. Synth. Catal. 2006, 348: 23 - 11a
Law KY. Chem. Rev. 1993, 93: 449Reference Ris Wihthout Link - 11b
Ferreira ICFR.Queiroz M.-JRP.Kirsch G. Tetrahedron 2003, 59: 975Reference Ris Wihthout Link - 11c
Watanabe M.Nishiyama M.Yamamoto T.Koie Y. Tetrahedron Lett. 2000, 41: 481Reference Ris Wihthout Link - 12
Roy AH.Hartwig JF. Organometallics 2004, 23: 194 - 13a
Macé Y.Kapdi AR.Fairlamb IJS.Jutand A. Organometallics 2006, 25: 1795Reference Ris Wihthout Link - 13b
Fairlamb IJS.Kapdi AR.Lee AF.McGlackem GP.Weissburger F.de Vries AHM.Van de Vondervoort LS. Chem. Eur. J. 2006, 12: 8750Reference Ris Wihthout Link - 13c
Dooleweerdt K.Fors BP.Buchwald SL. Org. Lett. 2010, 12: 2350Reference Ris Wihthout Link - 15
Gao C.Yang L. J. Org. Chem. 2008, 73: 1624Reference Ris Wihthout Link - 16a
Mann G.Hartwig JF.Driver MS.Fernandez-Rivas C. J. Am. Chem. Soc. 1998, 120: 827Reference Ris Wihthout Link - 16b
Watanabe M.Nishiyama M.Yamamoto T.Koie Y. Tetrahedron Lett. 2000, 41: 481Reference Ris Wihthout Link - 17a
Wagaw S.Yang B.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 6621Reference Ris Wihthout Link - 17b
Mauger C.Mignani G. Org. Process Res. Dev. 2004, 8: 1065Reference Ris Wihthout Link - 18
Nguyen HN.Huang X.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 11818
References and Notes
Typical Procedure
A
flame-dried Schlenk tube was charged with Pd(OAc)2 (4.5 mg,
0.02 mmol), L1 (13.7 mg, 0.03 mmol), PhB(OH)2 (6.1 mg,
0.05 mmol), and n-BuOH (2 mL) under an
atmosphere of nitrogen. The solution was stirred at r.t. for 15
min then K3PO4 (424.5 mg, 2.0 mmol) and ArOTs 1 (1mmol) were added, followed by aryl
amine 3 (1.2 mmol). The reaction was heated
to 110 ˚C and stirred for 15 h. The reaction mixture
was cooled to r.t. and diluted with Et2O (5 mL) and H2O
(3 mL). After separation of the layers, the aqueous phase was extracted
with Et2O (3 × 5 mL), and
the combined organic layers were dried over Na2SO4 and
concentrated in vacuo. Purification of the crude product by flash
column chromatography (silica gel; PE-Et3N, 99:1)
yielded compound 3.