RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258815
Ligand-Free Palladium-Catalyzed C-S Coupling Reactions Using Water as Solvent and Microwaves
Publikationsverlauf
Publikationsdatum:
08. Oktober 2010 (online)

Abstract
Herein we demonstrate for the first time a rapid and efficient method for the synthesis of aryl sulfides by the direct substitution reaction of aromatic thiols with aryl halides using water as solvent under microwave irradiation. This procedure offers a high yield in shorter reaction time as compared to conventional methods.
Key words
C-S coupling - aryl halides - thiols - microwave - palladium acetate
- 1a
Gremlyn RJ. An Introduction to Organosulfur Chemistry Wiley; New York: 1996.Reference Ris Wihthout Link - 1b
Thuillier A.Metzner P. Sulfur Reagents in Organic Synthesis Academic Press; New York: 1994.Reference Ris Wihthout Link - 1c
Luh TY.Lee CF. Eur. J. Org. Chem. 2005, 3875Reference Ris Wihthout Link - 2a
Nikolaou KC.Skokotas G.Maligres P.Zuccarello G.Schweiger EJ.Toshima K.Wendeborn S. Angew. Chem., Int. Ed. Engl. 1989, 28: 1272Reference Ris Wihthout Link - 2b
Nicolaou KC.Dai WM. Angew. Chem., Int. Ed. Engl. 1991, 30: 1387Reference Ris Wihthout Link - 3a
Prabharasuth R.Van Vranken DL. J. Org. Chem. 2001, 66: 5256Reference Ris Wihthout Link - 3b
Mitzel TM.Palomo C.Jendza K.
J. Org. Chem. 2002, 67: 136Reference Ris Wihthout Link - 3c
Sawada Y.Oku A. J. Org. Chem. 2004, 69: 2899Reference Ris Wihthout Link - 3d
Dong DW.Yang YO.Yu HF.Liu Q.Liu J.Wang M.Zhu J. J. Org. Chem. 2005, 70: 4535Reference Ris Wihthout Link - 4a
Herriott AW. Synth. Commun. 1975, 447Reference Ris Wihthout Link - 4b
Bradshaw JS.South JA.Hales RH. J. Org. Chem. 1972, 37: 2381Reference Ris Wihthout Link - 4c
Guindon Y.Frenette R.Fortin R.Rokach J. J. Org. Chem. 1983, 48: 1357Reference Ris Wihthout Link - 5a
Lindley J. Tetrahedron 1984, 40: 1433Reference Ris Wihthout Link - 5b
Van Bierbeek A.Gingras M. Tetrahedron Lett. 1998, 39: 6283Reference Ris Wihthout Link - 6a
Migita T.Shimizu T.Asami Y.Shiobara J.Kato Y.Kosugi M. Bull. Chem. Soc. Jpn. 1980, 53: 1385Reference Ris Wihthout Link - 6b
Kosugi M.Ogata T.Terada M.Sano H.Migita T. Bull. Chem. Soc. Jpn. 1985, 58: 3697Reference Ris Wihthout Link - 7
Correa A.Carril M.Bolm C. Angew. Chem. Int. Ed. 2008, 47: 2880 - 8
Wong YC.Jayanth TT.Cheng CH. Org. Lett. 2006, 8: 5613 - 9
Zhang Y.Ngeow KC.Ying JY. Org. Lett. 2007, 9: 3495Reference Ris Wihthout Link - 10
Verma AK.Singh J.Chaudary R. Tetrahedron Lett. 2007, 48: 7199 - 11
She J.Jiang Z.Wang Y. Tetrahedron Lett. 2009, 50: 593 - 12
Ishiyama T.Mori M.Suzuki A.Miyaura N.
J. Organomet. Chem. 1996, 525: 225 - 13
Fernandez-Rodriguez MA.Shen Q.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 2180 - 14
Mann G.Baranano D.Hartwig JF.Rheingold AL.Guzei IA. J. Am. Chem. Soc. 1998, 120: 9205 - 15
Itoh T.Mase T. Org. Lett. 2004, 6: 4587 - 16
Zheng N.McWilliams JC.Fleitz FJ.Armstrong JD.Volante RP. J. Org. Chem. 1998, 63: 9606 - 17
Sharma G.Kumar R.Chakraborti AK. J. Mol. Catal. A.: Chem. 2007, 263: 143 - 18
Zhu D.Xu L.Wu F.Wan B. Tetrahedron Lett. 2006, 47: 5781 - 19
Chang JWW.Chee S.Mak S.Buranaprasertsuk PW.Chavasiri PW.Chan H. Tetrahedron Lett. 2008, 49: 2018 - 20
Jammi S.Barua P.Rout L.Saha P.Punniyamurthy T. Tetrahedron Lett. 2008, 49: 1484 - 21
Rout L.Saha P.Jammi S.Punniyamurthy T. Eur. J. Org. Chem. 2008, 640 - 22
Buranaprasertsuk PJ.Chang WW.Chavasiri WP.Chan WH. Tetrahedron Lett. 2008, 49: 2023 - 23
Sperotto E.van Klink GPM.de Vries JG.van Koten G. J. Org. Chem. 2008, 73: 5625 - 24
Bagley MC.Dix MC.Fusillo V. Tetrahedron Lett. 2009, 50: 3661 - 25 For a microreview, see:
Prasad A.Eycken EV. Eur. J. Org. Chem. 2008, 1133 - 26 For microwave chemistry reviews,
see:
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 - 27
Cao H.Xiao WJ. Can. J. Chem. 2005, 83: 826 - 28
Yang Q.Li XY.Wu H.Xiao WJ. Tetrahedron Lett. 2006, 47: 3893 - 29
Larhed M.Moberg C.Hallberg A. Acc. Chem. Res. 2002, 35: 717 - 30
Velmathi S.Leadbeater NE. Tetrahedron Lett. 2008, 49: 4693 - 31
Narendar N.Velmathi S. Tetrahedron Lett. 2009, 50: 5159 - 32
Velmathi S.Reena V.Pal RP.Vinu A. Catal. Lett. 2010, 135: 148 - 34
Pilyugin VS.Kuznetsova SL.Sapozhnikov YuE.Chikisheva GE.Kiseleva GV.Vorob’eva TP.Klimakova EV.Sapozhnikova NA.Davletov RD.Galeeva ZB. Russ. J. Gen. Chem. 2008, 78: 446 - 35
Clark RD.Jahangir A.Severance D.Salazar R.Chang T.Chang D.Jett FM.Smith S.Bley K. Bioorg. Med. Chem. Lett. 2004, 14: 1053 - 36
Feng Y.Wang H.Sun F.Li Y.Fu X.Jin K. Tetrahedron 2009, 65: 9737 - 37
Prasad DJC.Naidu AB.Sekar G. Tetrahedron Lett. 2009, 50: 1411 - 38
Ravi V.Ramu E.Mujahid Alam M.Srinivas RA. Chem. Lett. 2004, 33: 1614
References and Notes
Typical Procedure
In
a Teflon-coated 50 mL vessel was placed 4-iodo-acetophenone (0.246
g, 1 mmol), of 4-aminothiophenol (0.125 g, 1 mmol), of Pd(OAc)2 (11
mg, 5 mol%), NaF (42 mg, 1 mmol), tetrabutylammonium bromide
(TBAB, 0.323 g, 1 mmol), and H2O (15 mL), and the vessel
was placed inside the microwave cavity (Milestone Synth) Initial microwave
irradiation of 150 W was used, the temperature being increased to
150 ˚C and held without agitation at this temperature for
20 min. During this time, the power was modulated automatically
to hold the reaction mixture at 150 ˚C. After allowing
the mixture to cool to r.t., the reaction vessel was opened and
the contents poured into a separating funnel. Water (30 mL) and
Et2O (30 mL) were added, and the organic material extracted
and removed. After further extraction of the aqueous layer, combining
the organic washings, and drying them over MgSO4, the
Et2O was removed in vacuo leaving the crude product that
was then purified as appropriate.