Subscribe to RSS
DOI: 10.1055/s-0030-1258087
Microwave-Assisted Demethylation of Methyl Aryl Ethers Using an Ionic Liquid
Publication History
Publication Date:
11 June 2010 (online)

Abstract
An efficient demethylation of methyl aryl ethers using an ionic liquid, 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]) has been developed. Methyl aryl ethers are successfully cleaved by the halide anion of [bmim][Br], without aid of any other activating agents. In this reaction, microwave irradiation was found to be crucial for the effective conversion. The newly developed protocol is a very attractive green chemical process as it utilizes minimal amount of cleaving reagents and does not require additional activating agents or solvents. Under the conditions described herein, a broad range of methyl aryl ethers were converted to the corresponding phenolic compounds in moderate to excellent yields in a short time.
Key words
demethylation - methyl aryl ether - ionic liquid - microwave irradiation
- 1a
Wuts PGM.Greene TW. Greene’s Protective Groups in Organic Synthesis 4th ed.: Wiley; New York: 2006.Reference Ris Wihthout Link - 1b
Kocienski PJ. Protecting Groups 3rd ed.: Thieme; Stuttgart: 2005.Reference Ris Wihthout Link - 2a
McOmie JFW.West DE. Org. Synth., Collect. Vol. V Wiley; New York: 1973. p.412Reference Ris Wihthout Link - 2b
Parker KA.Petraitis JJ. Tetrahedron Lett. 1981, 22: 397Reference Ris Wihthout Link - 2c
Li T.Wu YL. J. Am. Chem. Soc. 1981, 103: 7007Reference Ris Wihthout Link - 2d
Kawasaki I.Matsuda K.Kaneko T. Bull. Chem. Soc. Jpn. 1971, 44: 1986Reference Ris Wihthout Link - 2e
Jung ME.Lyster MA. J. Org. Chem. 1977, 42: 376lReference Ris Wihthout Link - 3a
Kende AS.Rizzi JP. Tetrahedron Lett. 1981, 22: 1779Reference Ris Wihthout Link - 3b
Bernard AM.Ghiani MR.Piras PP.Rivoldini A. Synthesis 1989, 287Reference Ris Wihthout Link - 3c
McCarthy JR.Moore JL.Crege RJ. Tetrahedron Lett. 1978, 183Reference Ris Wihthout Link - 3d
Gates M.Tschudi G. J. Am. Chem. Soc. 1956, 78: 1380Reference Ris Wihthout Link - 4a
Node M.Nishide K.Fuji K.Fujita E. J. Org. Chem. 1980, 45: 4275Reference Ris Wihthout Link - 4b
Inaba T.Umezawa I.Yuasa M.Inoue T.Mihashi S.Itokawa H.Ogura K. J. Org. Chem. 1987, 52: 2957Reference Ris Wihthout Link - For reviews on ionic liquids, see:
- 5a
Zhao H.Malhotra SV. Aldrichimica Acta 2002, 35: 75Reference Ris Wihthout Link - 5b
Welton T. Chem. Rev. 1999, 99: 2071Reference Ris Wihthout Link - 5c
Sheldon R. Chem. Commun. 2001, 2399Reference Ris Wihthout Link - 5d
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772Reference Ris Wihthout Link - 5e
Jain N.Kumar A.Chauhan S.Chauhan MS. Tetrahedron 2005, 61: 1015Reference Ris Wihthout Link - 5f
Chowdhury S.Mohan RS.Scott JL. Tetrahedron 2007, 63: 2363Reference Ris Wihthout Link - 6a
Wheeler C.West KN.Liotta CL.Eckert CA. Chem. Commun. 2001, 887Reference Ris Wihthout Link - 6b
Judeh ZMA.Shen HY.Chi BC.Feng LC.Selvasothi S. Tetrahedron Lett. 2002, 43: 9381Reference Ris Wihthout Link - 6c
Lourenco NMT.Alfonso CMA. Tetrahedron Lett. 2003, 59: 789Reference Ris Wihthout Link - 6d
Chiappe C.Pieraccini D.Saullo P. J. Org. Chem. 2003, 68: 6710Reference Ris Wihthout Link - 6e
Crowhurst L.Lancaster NL.Arlandis JMP.Welton T. J. Am. Chem. Soc. 2004, 126: 11549Reference Ris Wihthout Link - 6f
Lancaster NL. Chem. Res. 2005, 413Reference Ris Wihthout Link - 6g
Landini D.Maia A. Tetrahedron Lett. 2005, 46: 3961Reference Ris Wihthout Link - 6h For a recent review on
nucleophilic substitution reaction in ionic liquids, see:
Jorapur YR.Chi DY. Bull. Korean Chem. Soc. 2009, 27: 345Reference Ris Wihthout Link - 7
Driver G.Johnson KE. Green Chem. 2003, 5: 163 - 8a
Kemperman GJ.Roeters TA.Hilberink PW. Eur. J. Org. Chem. 2003, 1681Reference Ris Wihthout Link - 8b
Liu T.Hu Y. Synth. Commun. 2004, 34: 3209Reference Ris Wihthout Link - 9
Boovanahalli SK.Kim DW.Chi DY. J. Org. Chem. 2004, 69: 3340 - 10
Cheng L.Aw C.Ong SS.Lu X. Bull. Chem. Soc. Jpn. 2007, 80: 2008 - 11
Chae J. Arch. Pharm. Res. 2008, 31: 305 - 12
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 - 13a
Brauman JI.Olmstead WN.Lieder CA. J. Am. Chem. Soc. 1974, 96: 4030Reference Ris Wihthout Link - 13b
Olmstead WN.Brauman JI. J. Am. Chem. Soc. 1977, 99: 4219Reference Ris Wihthout Link - 13c
Tanaka K.Mackay GI.Payzant JD.Bohme DK. Can. J. Chem. 1976, 54: 1643Reference Ris Wihthout Link - 14a
Lancaster NL.Welton T.Young GB. J. Chem. Soc., Perkin Trans. 2 2001, 2267Reference Ris Wihthout Link - 14b
Lancaster NL.Salter PA.Welton T.Young GB. J. Org. Chem. 2002, 67: 8855Reference Ris Wihthout Link - 15
Anne G.Glenn AG.Jones PB. Tetrahedron Lett. 2004, 45: 6967
References and Notes
All the reagents were purchased from
Aldrich or TCI. Column chromatography was performed on Silica gel
60 (230-400 mesh, Merck) and TLC was performed on silica gel
60 F254 glass plate (Merck). Microwave reactions were conducted
on a CEM Discover® S-class instrument. ¹H NMR
(500 MHz) and ¹³C NMR (125MHz) spectra
were recorded on a Varian 500 NMR spectrometer with chemical shifts
reported in ppm relative to residual solvent peaks or to TMS as
the internal standard. Yields refer to isolated yields of compounds
greater than 95% pure as determined by ¹H NMR
and GC analyses. All compounds were characterized by ¹H
NMR and ¹³C NMR. Gas chromatography
analyses were performed on a Hewlett Packard 6890 instrument with HP-1
capillary column and mass spectra were recorded by HP 5973 MSD with
EI as the ionization method.
Representative
Procedure: To a microwave tube were added methyl aryl ether
(2.0 mmol) and 1-n-butyl-3-methylimidazolium
bromide (1.32 g, 6.0 mmol). The reaction tube was flushed with argon
and then was irradiated at 20 W for 40 min while cooled by air flow
(power control mode). After cooling to r.t., the reaction mixture
was acidified with 1 N HCl solution and extracted with EtOAc
(3 × 20
mL). The combined organic layer was washed with H2O,
brine, dried over MgSO4 and the solvent was evaporated
under vacuum. Purification of the crude product by column chromatography
(EtOAc in n-hexane) afforded the desired
product.
1-Naphthol (Table
[4]
, entry 1): pale pink solid (265
mg, 92%). ¹H NMR (500 MHz, CDCl3): δ = 8.15-8.20
(m, 1 H), 7.79-7.82 (m, 1 H), 7.46-7.51 (m, 2
H), 7.44 (d, J = 8.0 Hz, 1 H),
7.30 (t, J = 8.0 Hz, 1 H), 6.80
(d, J = 8.0 Hz, 1 H), 5.34 (s,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 151.6,
135.0, 127.9, 126.7, 126.1, 125.5, 124.6, 121.8, 120.9, 108.9. MS (EI): m/z = 144 [M+].
2-Naphthol (Table
[4]
, entry 2): pale pink solid (256
mg, 89%). ¹H NMR (500 MHz, CDCl3): δ = 7.74-7.77
(m, 2 H), 7.67 (d, J = 8.5 Hz,
1 H), 7.43 (t, J = 7.5 Hz, 1
H), 7.32 (t,
J = 7.4
Hz, 1 H), 7.14 (d, J = 2.5 Hz,
1 H), 7.10 (dd, J = 2.5, 8.5
Hz, 1 H), 5.10 (s, 1 H). ¹³C NMR (125
MHz, CDCl3):
δ = 153.6, 134.8,
130.1, 129.2, 128.0, 126.8, 126.6, 123.9, 118.0, 109.7. MS (EI): m/z = 144 [M+].
4-Phenylphenol (Table
[4]
, entry 3): white solid (333 mg, 98%). ¹H
NMR (500 MHz, CDCl3): δ = 7.53-7.55
(m, 2 H), 7.46-7.49 (m, 2 H), 7.40-7.43 (m, 2
H), 7.29-7.32 (m, 1 H), 6.89-6.92 (m, 2 H), 5.10
(s, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 155.3,
141.0, 134.2, 129.0, 128.7, 127.0, 126.9, 115.9. MS (EI): m/z = 170 [M+].
4-Hydroxyphenylphenylmethanone (Table
[4]
, entry 4): white solid (376 mg,
95%). ¹H NMR (500 MHz, CDCl3):
δ = 7.78
(d, J = 9.0 Hz, 2 H), 7.76 (d, J = 7.0 Hz, 2 H), 7.64 (s, 1
H), 7.58 (t, J = 7.5 Hz, 1 H),
7.48 (t, J = 8.0 Hz, 2 H), 6.95
(td, J = 2.0, 9.0 Hz, 2 H). ¹³C
NMR (125 MHz, CDCl3): δ = 197.3, 161.2,
138.2, 133.5, 132.5, 130.2, 129.7, 128.6, 115.7. MS (EI): m/z = 198 [M+].
2′-Hydroxyacetophenone (Table
[4]
, entry 5): pale yellow oil (231
mg, 85%). ¹H NMR (500 MHz, CDCl3): δ = 12.27
(s, 1 H), 7.74 (ddd, J = 1.5,
2.5, 7.9 Hz, 1 H), 7.46-7.50 (m, 1 H), 6.98 (ddd, J = 1.5, 2.5, 8.3 Hz, 1 H),
6.89-6.93 (m, 1 H), 2.64 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 204.8, 162.6, 136.7,
131.0, 120.0, 119.2, 118.7, 26.9. MS (EI):
m/z = 136 [M+].
3′-Hydroxyacetophenone (Table
[4]
, entry 6): yellow solid (250 mg,
92%). ¹H NMR (500 MHz, CDCl3): δ = 7.54
(t,
J = 2.5 Hz, 1
H), 7.51 (td, J = 1.0, 7.5 Hz,
1 H), 7.34 (t, J = 7.5 Hz, 1
H), 7.11 (ddd, J = 1.0, 2.5,
8.0 Hz, 1 H), 6.05 (br s, 1 H), 2.61 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 200.0, 156.7,
138.5, 130.2, 121.3, 121.1, 114.9, 27.1. MS (EI):
m/z = 136 [M+].
4′-Hydroxyacetophenone (Table
[4]
, entry 7): white solid (267 mg,
98%). ¹H NMR (500 MHz, CDCl3): δ = 7.91
(d,
J = 8.5 Hz, 2
H), 6.91 (d, J = 8.5 Hz, 2 H),
6.66 (br s, 1 H), 2.59 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 198.9, 161.7, 131.5,
129.8, 115.8, 26.6. MS (EI): m/z = 136 [M+].
Estrone (Table
[4]
, entry 8): white solid (286 mg,
53%). ¹H NMR (500 MHz, CDCl3): δ = 7.16
(d, J = 8.5 Hz, 1 H), 6.65 (dd, J = 2.0, 9.0 Hz, 1 H), 6.59
(d, J = 2.0 Hz, 1 H), 4.74 (s, 1
H), 2.87 (dd, J = 3.5, 10.0
Hz, 2 H), 2.46 (q, J = 9.0 Hz,
1 H), 2.38 (t, J = 10.0 Hz,
1 H), 2.24 (m, 1 H), 1.91-2.21 (m, 4 H), 1.27-1.68
(m, 4 H), 1.25 (t, J = 7.0 Hz,
2 H), 0.91 (s, 3 H). ¹³C NMR (125 MHz,
CDCl3): δ = 221.5, 153.7, 138.3, 132.3,
126.8, 115.5, 113.1, 50.6, 48.3, 44.2, 38.6, 36.2, 31.8, 29.7, 26.7,
26.2, 21.8, 14.1. MS (EI): m/z = 270 [M+].
4-Cyanophenol (Table
[4]
, entry 9): white solid (217 mg, 91%). ¹H
NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 9.0 Hz, 2 H), 6.92 (d, J = 9.0 Hz, 2 H), 6.31 (br s,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 160.6,
134.6, 119.6, 116.8, 103.0. MS (EI): m/z = 119 [M+].
α,α,α-Trifluoro-
m
-cresol (Table
[4]
, entry 10): yellow oil (305 mg,
94%). ¹H NMR (500 MHz, CDCl3): δ = 7.37
(t,
J = 8.0 Hz, 1
H), 7.23 (d, J = 8.0 Hz, 1 H),
7.11 (s, 1 H), 7.03 (dd, J = 2.5,
8.0 Hz, 1 H), 5.39 (br s, 1 H). ¹³C
NMR (125 MHz, CDCl3): δ = 155.7, 132.3
(q, J = 32.0 Hz), 130.6, 124.0 (q, J = 270 Hz), 119.1 (d, J = 1.4 Hz), 118.0 (d, J = 4.1 Hz), 112.6 (d, J = 4.3 Hz). MS (EI): m/z = 162 [M+].
3-Bromophenol (Table
[4]
, entry 11): yellow solid (320 mg, 93%). ¹H
NMR (500 MHz, CDCl3): δ = 7.10 (t, J = 8.0 Hz, 1 H), 7.05-7.08
(m, 1 H), 7.02 (t, J = 2.0 Hz,
1 H), 6.76-6.78 (m, 1 H), 5.24 (s, 1 H). ¹³C
NMR (125 MHz, CDCl3): δ = 156.6, 131.1,
124.2, 123.0, 119.1, 114.5. MS (EI): m/z = 172 [M+].
4-Isopropylphenol (Table
[4]
, entry 12): pale yellow solid (267
mg, 98%). ¹H NMR (500 MHz, CDCl3): δ = 7.12
(d,
J = 9.0 Hz, 2
H), 6.79 (d, J = 9.0 Hz, 2 H),
5.15 (br s, 1 H), 2.83-2.91 (m, 1 H), 1.24 (d, J = 7.0 Hz, 6 H). ¹³C
NMR (125 MHz, CDCl3): δ = 153.7, 141.5,
127.7, 115.3, 33.5, 24.5. MS (EI): m/z = 136 [M+].
2,6-Diisopropylphenol (Table
[4]
, entry 13): yellow oil (335 mg,
94%). ¹H NMR (500 MHz, CDCl3): δ = 7.10
(d, J = 7.5 Hz, 2 H), 6.94 (t, J = 7.5 Hz, 1 H), 4.84 (s, 1
H), 3.10-3.30 (m, J = 7.0
Hz, 2 H), 1.30 (d, J = 7.0 Hz,
12 H). ¹³C NMR (125 MHz, CDCl3): δ = 150.2,
133.8, 123.7, 120.9, 27.4, 23.0. MS (EI): m/z = 178 [M+].
4-Hydroxybenzaldehyde (Table
[4]
, entry 14): yellow solid (102 mg,
42%). ¹H NMR (500 MHz, CDCl3): δ = 9.87
(s, 1 H), 7.82 (d, J = 9.0 Hz,
2 H), 6.97 (d, J = 9.0 Hz, 2
H), 6.22 (br s, 1 H). ¹³C NMR (125
MHz, CDCl3): δ = 191.5, 162.0, 132.8,
130.0, 116.3. MS (EI): m/z = 121 [M+].
Ethyl 4-Hydroxybenzoate (Table
[4]
, entry 15): white solid (83 mg,
25%). ¹H NMR (500 MHz, CDCl3): δ = 7.96
(d, J = 7.2 Hz, 2 H), 6.88 (d, J = 7.8 Hz, 2 H), 6.51 (br s,
1 H), 4.36 (q, J = 7.0 Hz, 2
H), 1.39 (t, J = 7.0 Hz, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 167.2, 160.5,
132.2, 122.8, 115.5, 61.2, 14.6. MS (EI): m/z = 166 [M+].
2-Methoxyphenol (Table
[4]
, entry 16): colorless oil (87 mg, 35%). ¹H
NMR (500 MHz, CDCl3): δ = 6.91-6.95
(m, 1 H), 6.82-6.90 (m, 3 H), 5.64 (s, 1 H), 3.88 (s, 3
H). ¹³C NMR (125 MHz, CDCl3): δ = 146.8,
145.9, 121.7, 120.4, 114.8, 110.9, 56.1. MS (EI): m/z = 124 [M+].