Subscribe to RSS
DOI: 10.1055/s-0028-1087674
Aerobic Oxygenation of Benzylic Ketones Promoted by a Gold Nanocluster Catalyst
Publication History
Publication Date:
15 January 2009 (online)

Abstract
Gold nanoclusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) promote the oxidation of benzylic ketones, including auto-oxidation-type bond-cleavage reactions and α-hydroxylation, under ambient conditions. The catalyst accelerates the formation of an α-peroxide intermediate, from which bond cleavage spontaneously proceeds in aqueous solvent to give the auto-oxidation products. In contrast, the α-hydroxylation product is obtained predominantly in DMSO solvent.
Key words
gold nanocluster - auto-oxidation - α-hydroxylation
- 1a
Tsunoyama H.Sakurai H.Ichikuni N.Negishi Y.Tsukuda T. Langmuir 2004, 20: 11293Reference Ris Wihthout Link - 1b
Sakurai H.Tsunoyama H.Tsukuda T. J. Organomet. Chem. 2007, 692: 368Reference Ris Wihthout Link - 2a
Tsunoyama H.Sakurai H.Negishi Y.Tsukuda T. J. Am. Chem. Soc. 2005, 127: 9374Reference Ris Wihthout Link - 2b
Tsunoyama H.Sakurai H.Tsukuda T. Chem. Phys. Lett. 2006, 429: 528Reference Ris Wihthout Link - 2c
Tsunoyama H.Tsukuda T.Sakurai H. Chem. Lett. 2007, 36: 212Reference Ris Wihthout Link - 2d
Chaki NK.Tsunoyama H.Negishi Y.Sakurai H.Tsukuda T. J. Phys. Chem. C 2007, 111: 4885Reference Ris Wihthout Link - 2e
Kanaoka S.Yagi N.Fukuyama Y.Aoshima S.Tsunoyama H.Tsukuda T.Sakurai H. J. Am. Chem. Soc. 2007, 129: 12060Reference Ris Wihthout Link - 3
Sakurai H.Tsunoyama H.Tsukuda T. Trans. Mater. Res. Soc. Jpn. 2006, 31: 521 - 4
Kamiya I.Tsunoyama H.Tsukuda T.Sakurai H. Chem. Lett. 2007, 36: 646 - For recent reviews, see:
- 5a
Haruta M. Chem. Rec. 2003, 3: 75Reference Ris Wihthout Link - 5b
Hashmi ASK.Huchings G. Angew. Chem. Int. Ed. 2006, 45: 7896Reference Ris Wihthout Link - 5c
Matsumoto T.Ueno M.Wang N.Kobayashi S. Chem. Asian J. 2008, 3: 196Reference Ris Wihthout Link - 5d
Pina CD.Falletta E.Prati L.Rossi M. Chem. Soc. Rev. 2008, 37: 2077Reference Ris Wihthout Link - 5e
Corma A.Garcia H. Chem. Soc. Rev. 2008, 37: 2096Reference Ris Wihthout Link - For pioneering examples, see:
- 6a
Hayashi T.Tanaka K.Haruta M. J. Catal. 1998, 178: 566Reference Ris Wihthout Link - 6b
Hughes MD.Xu Y.-J.Jenkins P.McMorn P.Landon P.Enache DI.Carley AF.Attard GA.Hutchings GJ.King F.Stitt EH.Johnston P.Griffin K.Kiely CJ. Nature (London) 2005, 437: 1132Reference Ris Wihthout Link - 7
Sawaki Y.Ogata Y. J. Am. Chem. Soc. 1975, 97: 6983 - 8a
Russel GA.Jansen EG.Bemis AG.Geels EJ.Moye AJ.Mak S.Strom ET. Adv. Chem. Ser. 1965, 51: 112Reference Ris Wihthout Link - 8b
Russel GA.Bemis AG.Geels EJ.Jansen EG.Moye A. Adv. Chem. Ser. 1968, 75: 174Reference Ris Wihthout Link - 10
Chen B.-C.Zhou P.Davis FA.Ciganek E. Org. React. 2003, 62: 1 - 11a
Masui M.Ando A.Shioiri T. Tetrahedron Lett. 1988, 29: 2835Reference Ris Wihthout Link - 11b
De Vries EFJ.Ploeg L.Colao M.Brussee J.Van der Gen A. Tetrahedron: Asymmetry 1995, 6: 1123Reference Ris Wihthout Link - 11c
Christoffers J. J. Org. Chem. 1999, 64: 7668Reference Ris Wihthout Link - 11d
Watanabe T.Ishikawa T. Tetrahedron Lett. 1999, 40: 7795Reference Ris Wihthout Link - 11e
Baucherel X.Levoirier E.Uziel J.Juge S. Tetrahedron Lett. 2000, 41: 1385Reference Ris Wihthout Link - 11f
Christoffers J.Werner T. Synlett 2002, 119Reference Ris Wihthout Link - 11g
Christoffers J.Werner T.Unger S.Frey W. Eur. J. Org. Chem. 2003, 425Reference Ris Wihthout Link - 11h
Sundén H.Engqvist M.Casas J.Ibrahem I.Córdova A. Angew. Chem. Int. Ed. 2004, 43: 6532Reference Ris Wihthout Link - 11i
Arai T.Takasugi H.Sato T.Noguchi H.Kanoh H.Kaneko K.Yanagisawa A. Chem. Lett. 2005, 34: 1590Reference Ris Wihthout Link - 11j
Arai T.Sato T.Noguchi H.Kanoh H.Kaneko K.Yanagisawa A. Chem. Lett. 2006, 35: 1094Reference Ris Wihthout Link - 11k
Sano D.Nagata K.Itoh T. Org. Lett. 2008, 10: 1593Reference Ris Wihthout Link - 11l
Monguchi Y.Takahashi T.Iida Y.Fujiwara Y.Inagaki Y.Maegawa T.Sajiki H. Synlett 2008, 2291Reference Ris Wihthout Link
References and Notes
General Procedure
for Auto-Oxidation-Type Reaction of Compound 1 Catalyzed by Au:PVP
under DBU/H
2
O-MeCN Conditions
A test
tube (ϕ = 30 mm) was placed
with 1 (0.10 mmol), DBU (30 µL,
0.20 mmol), and MeCN (3 mL). The aq soln of Au:PVP (0.5 mM, 6 mL = 3
atom%) was added and the reaction mixture was stirred vigorously
(1300 rpm) at 27 ˚C or 50 ˚C for the time specified.
The reaction mixture was quenched with 1 M HCl (2 mL) solution,
extracted with MTBE (3 × 10 mL), and
then the combined organic layers were washed with brine, dried over
Na2SO4, and concentrated in vacuo. The crude
products were separated by PTLC (Wakogel BF-5) or GPC, giving 2 and 3.
General Procedure
for α-Hydroxylation of Compound 1 Catalyzed by Au:PVP under
NaOAc/DMSO Conditions
A test tube (ϕ = 30
mm) was placed with 1 (0.1 mmol), NaOAc
(8.2 mg, 0.10 mmol), and dried Au:PVP (22.9 mg, 3 atom%).
DMSO (6 mL) was added, and the reaction mixture was stirred vigorously
(1300 rpm) at 27 ˚C or 50 ˚C for the time specified.
The reaction mixture was extracted with EtOAc and then the combined
organic layers were washed with brine, dried over Na2SO4,
and concentrated in vacuo. Purification of the product was carried
out by PTLC or GPC.
Compound 3b:
colorless oil. IR (neat): ν = 3445, 1710, 1608, 1509,
1254 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 2.25 (s, 3 H),
3.81 (s, 3 H), 4.79 (s, 1 H), 6.88-6.90 (m, 2 H), 7.25-7.28
(m, 2 H), 7.35-7.38 (m, 5 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 208.76, 159.40,
141.41, 133.32, 129.35, 128.43, 128.16, 128.03, 113.80, 85.33, 55.29,
26.07 ppm. Anal. Calcd for C16H16O3:
C, 74.98; H, 6.29; Found: C, 74.71; H, 6.37.