Subscribe to RSS
DOI: 10.1055/s-0028-1087528
Highly Regioselective Heck Coupling Reactions of Aryl Halides and Dihydropyran in the Presence of an NHC-Pyridine Ligand
Publication History
Publication Date:
21 January 2009 (online)

Abstract
The Heck coupling reactions of aryl halides and 3,4-dihydro-2H-pyran facilitated the regioselective synthesis of arylated cyclic enol ethers. Good yields were obtained using 5 mol% of an NHC-ligand-Pd-catalyst complex in the presence of K2CO3 in DMF at 100 ˚C. The use of this catalytic system broadens the substrate scope and improves the selectivity for this cross-coupling process.
Key words
Heck reaction - N-heterocyclic carbine - pyridine ligand - palladium - cyclic enol ether
- 1a
Bourissou D.Guerret O.Gabbai F.Bertrand G. Chem. Rev. 2000, 100: 39Reference Ris Wihthout Link - 1b
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290Reference Ris Wihthout Link - 1c
Perry MC.Burgess K. Tetrahedron: Asymmetry 2003, 14: 951Reference Ris Wihthout Link - 1d
Cesar V.Bellemin-Laponnaz S.Gade LH. Chem. Soc. Rev. 2004, 33: 619Reference Ris Wihthout Link - 1e
Sigman MS.Jensen AD. Acc. Chem. Res. 2006, 39: 221Reference Ris Wihthout Link - 1f
Douthwaite RE. Coord. Chem. Rev. 2007, 251: 702Reference Ris Wihthout Link - 1g
Kantchev EAB.O’Brien CJ.Organ MG. Angew. Chem. Int. Ed. 2007, 46: 2768Reference Ris Wihthout Link - 1h
Gade LH.Bellemin-Laponnaz S. In Top. Organomet. Chem. Vol. 21:Glorius F. Springer; Berlin: 2007. p.117-157Reference Ris Wihthout Link - 1i
Arduengo AJ.Harlow RL.Kline M. J. Am. Chem. Soc. 1991, 113: 361Reference Ris Wihthout Link - 1j
Enders D.Breuer K.Raabe G.Runsink J.Teles JH.Melder JP.Ebel K.Brode S. Angew. Chem., Int. Ed. Engl. 1995, 34: 1021Reference Ris Wihthout Link - 1k
Herrmann WA.Elison M.Fischer J.Kocher C.Artus GRJ. Chem. Eur. J. 1996, 2: 772Reference Ris Wihthout Link - 2a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009Reference Ris Wihthout Link - 2b
Peris E.Crabtree RH. Coord. Chem. Rev. 2004, 248: 2239Reference Ris Wihthout Link - 2c
Grasa GA.Singh R.Stevens ED.Nolan SP. J. Organomet. Chem. 2003, 687: 269Reference Ris Wihthout Link - 2d
Najera C.Gil-Molto J.Karlstrom S.Falvell LR. Org. Lett. 2003, 5: 1451Reference Ris Wihthout Link - 2e
Chen W.Xi C.Wu Y.
J. Organomet. Chem. 2007, 692: 4381Reference Ris Wihthout Link - 2f
Khramov DM.Rosen EL.Joyce AV.Vu PD.Lynch VM.Bielawski CW. Tetrahedron 2008, 64: 6853Reference Ris Wihthout Link - 2g
Taige MA.Zeller A.Ahrens S.Goutal S.Herdtweck E.Strassner T. J. Organomet. Chem. 2007, 692: 1519Reference Ris Wihthout Link - 2h
Chen T.Gao J.Shi M. Tetrahedron 2006, 62: 6289Reference Ris Wihthout Link - 2i
Xu Q.Duan W.Lei Z.Zhu Z.Shi M. Tetrahedron 2005, 61: 11225Reference Ris Wihthout Link - 3
Crabtree RH. J. Organomet. Chem. 2006, 691: 3146 - 4a
Mizoroki T.Mori K.Ozaki A. Bull. Chem. Soc. Jpn. 1971, 44: 581Reference Ris Wihthout Link - 4b
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320Reference Ris Wihthout Link - 4c
de Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379Reference Ris Wihthout Link - 4d
Crisp GT. Chem. Soc. Rev. 1998, 27: 427Reference Ris Wihthout Link - 4e
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009Reference Ris Wihthout Link - 4f
Jeffery T. In Advances in Metal-Organic Chemistry Vol. 5:Liebeskind LS. JAI; London: 1996. p.153-260Reference Ris Wihthout Link - 4g
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis VCH; New York: 1996. p.Chap. 31Reference Ris Wihthout Link - 4h
Link JT.Overman LE. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; New York: 1998. Chap. 6.Reference Ris Wihthout Link - 5a
Shimizu Y. Chem. Rev. 1993, 93: 1685Reference Ris Wihthout Link - 5b
Yasumoto T. Chem. Rec. 2001, 1: 228Reference Ris Wihthout Link - 5c
Conway JC.Urch CJ.Quayle P.Xu J. Synlett 2006, 776Reference Ris Wihthout Link - 6a
Arai I.Doyle Daves G. J. Org. Chem. 1978, 44: 21Reference Ris Wihthout Link - 6b
Andersson C.Hallberg A.Doyle Daves G. J. Org. Chem. 1987, 52: 3529Reference Ris Wihthout Link - 6c
Larock RC.Gong WH.Baker BE. Tetrahedron Lett. 1989, 30: 2603Reference Ris Wihthout Link - 6d
Loiseleur O.Hayashi M.Schmees N.Pfaltz A. Synthesis 1997, 1338Reference Ris Wihthout Link - 6e
Jeffery T.David M. Tetrahedron Lett. 1998, 39: 5751Reference Ris Wihthout Link - 6f
Dupont J.Gruber AS.Fonseca GS.Monteiro AL.Ebeling G. Organometallics 2001, 20: 171Reference Ris Wihthout Link - 7
Barczak NT.Grote RE.Jarvo ER. Organometallics 2007, 26: 4863 - 9
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176Reference Ris Wihthout Link
References and Notes
When using a combination of Pd(OAc)2 and 1,10-phenan-throline or 2,9-dimethylphenanthroline, the catalyst and ligand were premixed in DMF at r.t. for 30 min before the addition of substrates.
10
General Procedure
for the Synthesis of Palladium(II) Complex 5
To a
solution of 4 (0.6 mmol) in anhyd CH2Cl2 (20
mL) was added Ag2O (0.3 mmol), and the reaction mixture
was stirred at r.t. for 4 h. The reaction mixture was then gravity
filtered and dried under nitrogen to obtain a silver complex as
a white solid. The silver complex (0.4 mmol) was then suspended
in a solution of MeCN (20 mL) in a foil-covered round-bottom flask.
To the reaction mixture was then added Pd(OAc)2 (0.4
mmol), and the reaction mixture was stirred at r.t. for 24 h. The
reaction mixture was then gravity filtered, and the filtrate was
concentrated in vacuo to obtain 5 (100 mg,
38% over two steps) as an orange solid. ¹H
NMR (250 MHz, CDCl3): δ = 8.98-9.02
(m, 1 H), 7.82-7.90 (m, 1 H), 7.59 (d, J = 10.0
Hz, 1 H), 7.49-7.55 (m, 1 H), 7.32-7.45 (m, 4
H), 5.96 (br s, 2 H), 4.06 (s, 3 H), 2.02 (s, 6 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 178.1, 153.5,
153.4, 139.8, 134.5, 132.7, 125.0, 124.9, 124.4, 124.1, 110.9, 110.4,
51.40, 33.40, 22.60.
General Procedure
for the Preparation of Substituted Dihydropyrans
An
oven-dried resealable Schlenk flask was evacuated and filled with
argon, then were added 4-iodoanisole (117 mg, 0.5 mmol), 3,4-dihydro-2H-pyran (0.55 mL, 6 mmol), K2CO3 (104
mg, 0.75 mmol), DMF (1 mL), palladium complex 5 (22
mg, 0.05 mmol). The reaction mixture was stirred at 100 ˚C.
After 48 h the solution was then allowed to cool to r.t. EtOAc (20
mL) was added to the reaction mixture, and then the reaction mixture
was washed with H2O (3 × 10
mL). The organic layer was dried over Na2SO4.
After filtration, solvent was evaporated and purified by column chromatography
(hexanes-EtOAc, 19:1), to afford 2-(4-methoxy-phenyl)-3,4-dihydro-2H-pyran (76 mg, 80%) as a light
orange oil.
Compound 11a: yellow
oil (62 mg, 71%). ¹H NMR (250 MHz,
CDCl3): δ = 7.43 (m, 1 H), 7.17-7.26
(m, 3 H), 6.56 (d, J = 7.5
Hz, 1 H), 5.00 (dd, J = 10.0
Hz, 1 H), 4.80 (m,
1 H), 2.35 (s, 3 H), 2.20-2.32
(m, 2 H), 1.84-2.12 (m, 2 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 144.7, 140.0,
134.6, 130.4, 127.5, 126.3, 125.6, 100.6, 74.37, 29.29, 20.93, 18.95.
GC-MS: m/z calcd for C12H14O:
174.1; found: 173.9. Anal. Calcd for C12H14O:
C, 82.72; H, 8.10. Found: C, 82.56; H, 8.12.
Compound 11b: yellow oil (65 mg, 75%). ¹H
NMR (250 MHz, CDCl3): δ: = 7.45-7.48
(m, 1 H), 7.38-7.42 (m, 1 H), 7.31-7.35 (m, 1
H), 7.17-7.27 (m, 1 H), 6.61 (d, J = 7.5
Hz, 1 H), 4.87-4.89 (m, 1 H), 4.83-4.87 (m, 1
H), 2.44 (s, 3 H), 2.26-2.36 (m, 2 H), 1.96-2.16
(m, 2 H). ¹³C NMR (62.5 MHz, CDCl3): δ = 144.1,
137.9, 128.5, 127.9, 126.5, 124.2, 122.9, 100.5, 77.06, 30.22, 21.35,
20.29. GC-MS m/z calcd for C12H14O:
174.1; found: 174.0. Anal. Calcd for C12H14O: C,
82.72; H, 8.10. Found: C, 82.69; H, 8.11
Compound 11c: yellow oil (54 mg, 62%). ¹H
NMR (250 MHz, CDCl3): δ = 7.48 (d, J = 10.0 Hz,
2 H), 7.22 (d, J = 10.0
Hz, 2 H), 6.53 (d, J = 7.5
Hz, 1 H), 4.82 (m, 1 H), 4.77 (m, 1 H), 2.35 (s, 3 H), 2.13-2.25
(m, 2 H), 1.90-2.08 (m, 2 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 140.1, 137.0, 129.0,
128.9, 126.8, 125.9, 92.47, 77.50, 32.67, 22.49, 21.10. GC-MS: m/z calcd: 174.1; found: 174.0.
Compound 12a: yellow oil (59 mg, 62%). ¹H
NMR (250 MHz, CDCl3): δ = 7.43 (d, J = 10.0 Hz,
1 H), 7.22-7.35 (m, 1 H), 6.98 (t, J = 7.5
Hz, 1 H), 6.88 (d, J = 7.5
Hz, 1 H), 6.66 (d, J = 7.5
Hz, 1 H), 5.21 (d, J = 7.5
Hz, 1 H), 4.74-4.80 (m, 1 H), 3.84 (s, 3 H), 1.94-2.30
(m, 2 H), 1.72-1.88 (m, 2 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 158.1, 144.5,
128.1, 128.0, 126.4, 122.5, 111.0, 100.6, 72.47, 56.26, 29.58, 20.50.
GC-MS: m/z calcd for C12H14O2:
190.1; found: 190.0. Anal. Calcd for C12H14O2:
C, 75.76; H, 7.42. Found: C, 75.71; H, 7.48.
Compound 13: yellow oil (17 mg, 15%). ¹H
NMR (250 MHz, CDCl3): δ = 7.62 (d, J = 10.0 Hz,
2 H), 7.47 (d, J = 10.0
Hz, 2 H), 6.54 (d, J = 7.5
Hz, 1 H), 4.90 (d, J = 7.5 Hz,
1 H), 4.75-4.84 (m, 1 H), 1.65-2.15 (m, 2 H),
1.55-1.64 (m, 2 H). GC-MS: m/z calcd:
230.1; found: 229.7.
Compound 16:
orange oil (52 mg, 55%). ¹H NMR (250 MHz,
CDCl3): δ = 6.98-7.11 (m,
3 H), 6.51 (d, J = 7.5
Hz, 1 H), 5.20 (d, J = 10.0
Hz, 1 H), 4.76-4.82 (m, 1 H), 2.39 (s, 6 H), 2.02-2.30
(m, 2 H), 1.80-1.94 (m, 2 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 143.9, 137.1,
136.0, 129.2, 127.2, 100.2, 75.11, 26.03, 20.80, 20.51. GC-MS: m/z calcd for C13H16O: 188.1;
found: 188.0. Anal. Calcd for C13H16O: C,
82.94; H, 8.57. Found: C, 82.89; H, 8.59.
Compound 17: a yellow oil (49 mg, 61%). ¹H
NMR (250 MHz, CDCl3): δ = 8.61 (s,
1 H), 8.53-8.57 (m, 1 H), 7.67-7.73 (m, 1 H),
7.27-7.33 (m, 1 H), 6.53 (d, J = 7.5
Hz, 1 H), 4.88 (d, J = 10.0
Hz, 1 H), 4.78-4.84 (m, 1 H), 2.18-2.30 (m, 2
H), 1.88-2.14 (m, 2 H). ¹³C
NMR (62.5 MHz, CDCl3): δ = 149.1, 147.8,
143.9, 133.6, 123.4, 101.0, 74.82, 30.14, 20.02. GC-MS: m/z calcd for C10H11NO:
161.1; found: 161.0. Anal. Calcd for C10H11NO:
C, 74.51; H, 6.88; N, 8.69. Found: C, 74.39; H, 6.91; N, 8.61.