Subscribe to RSS
DOI: 10.1055/s-0028-1087523
A Facile Approach to 2-Substituted Isoflav-3-enes via Isoflavylium Salts
Publication History
Publication Date:
15 January 2009 (online)

Abstract
A compact and regioselective approach to 2-substituted isoflav-3-enes based on a preformed 2-unsubstituted isoflavene is described. Isoflavene oxidation by hydride ion abstraction to the corresponding isoflavylium salt using trityl hexafluorophosphate followed by nucleophilic addition to the 2-position resulted in the introduction of a range of substituent groups in generally moderate to good yields.
Key words
nucleophilic additions - isoflavonoid - isoflavylium - isoflavene - trityl salts
- 1a
Jain N.Kanojia RM.Xu J.Jian-Zhong G.Pacia E.Lai M.-T.Du F.Musto A.Allan G.Hahn D.Lundeen S.Sui Z. J. Med. Chem. 2006, 49: 3056Reference Ris Wihthout Link - 1b
Sarkar FH.Li Y. Cancer Metastasis Rev. 2002, 25: 265Reference Ris Wihthout Link - 1c
Fwu S.-Y.Chang C.-Y.Huang L.-J.Teng C.-M.Wang J.-P.Chen S.-C.Kuo S.-C. Chin. Pharm. J. (Taipei) 1999, 34: 255Reference Ris Wihthout Link - 1d
Emmanuel T.Dieudonne N.Tanyi MJ.Tanee FZ.Albert K.Jean-Claude M.Rosa GM.Carmen RM.Salvador M.Luis RJ. J. Nat. Prod. 2003, 66: 891Reference Ris Wihthout Link - 1e
Lozovaya VV.Lygin AV.Zernova OV.Li S.Hartman GL.Widholm JM. Plant Phys. Biochem. 2004, 42: 671Reference Ris Wihthout Link - 1f
Kuroda M.Mimaki Y.Sashida Y.Mae T.Kishida H.Nishiyama T.Tsukagawa M.Konishi E.Takahashi K.Kawada T.Nakagawa K.Kitahara M. Bioorg. Med. Chem. Lett. 2003, 13: 4267Reference Ris Wihthout Link - 1g
Martinez RM.Gimenez I.Lou JM.Mayoral JA.Alda JO. Am. J. Clin. Nutr. 1998, 68 (S1): 1354SReference Ris Wihthout Link - 2a
Miyase T.Sano M.Nakai H.Muraoka M.Nakazawa M.Suzuki M.Yoshino K.Nishihara Y.Tanai J. Phytochemistry 1999, 52: 303Reference Ris Wihthout Link - 2b
Gamble JR.Xia P.Hahn CN.Drew JJ.Drogemuller CJ.Brown D.Vadas MA. Int. J. Cancer 2006, 118: 2412Reference Ris Wihthout Link - 2c
Alvero AB.O’Malley D.Brown D.Kelly G.Garg M.Chen W.Rutherford T.Mor G. Curr. Oncol. Rep. 2006, 8: 104Reference Ris Wihthout Link - 3
Grese TA.Pennington LD. Tetrahedron Lett. 1995, 36: 8913 - 4a
Cook CE.Twine CE. J. Chem. Soc., Chem. Commun. 1968, 791Reference Ris Wihthout Link - 4b
Cook CE.Wall ME. J. Org. Chem. 1968, 33: 2998Reference Ris Wihthout Link - 4c
Cook CE.Corley RC.Wall ME. J. Org. Chem. 1965, 30: 4114Reference Ris Wihthout Link - 5
Alberola A.Andres C.Ortega AG.Pedrosa R.Vicente M. J. Heterocycl. Chem. 1986, 23: 1781 - 6
Varma RS.Dahiya R. J. Org. Chem. 1998, 63: 8038 - 7
Gauthier S.Caron B.Cloutier J.Dory YL.Favre A.Larouche D.Mailhot J.Ouellet C.Schwerdtfeger A.Leblanc G.Martel C.Simard J.Merand Y.Belanger A.Labrie C.Labrie F. J. Med. Chem. 1997, 40: 2117 - 8a
Trityl perchlorate has been used previously to access chromylium salts from the dihydro precursors8b but not, as far as we can ascertain, from 2-unsubstituted isoflav-3-enes. Isoflavylium salts can also be made, for example, by ring construction8c or by trityl salt mediated elimination of 2-substituted isoflav-3-enes8d
Reference Ris Wihthout Link - 8b
Canalini G.Degani I.Fochi R.Spunta G. Ann. Chim. (Rome) 1967, 57: 1045Reference Ris Wihthout Link - 8c
Bouvier P.Andrieux J.Molho D. Tetrahedron Lett. 1974, 1033Reference Ris Wihthout Link - 8d
Dean FM.Varma RS. J. Chem. Soc., Perkin Trans. 1 1982, 1193Reference Ris Wihthout Link - 9a
Compound 1a is accessible from the commercially available precursors daidzein9c or daidzein diacetate9d,e
Reference Ris Wihthout Link - 9b
Faragalla JE. PhD Thesis University of Wollongong; Australia: 2005.Reference Ris Wihthout Link - 9c
Heaton A, andJeoffreys G. inventors; WO 2005103025. ; Chem. Abstr. 2005, 143, 422198Reference Ris Wihthout Link - 9d
Heaton A, andKumar N. inventors; WO 2000049009. ; Chem. Abstr. 2000, 133, 177059Reference Ris Wihthout Link - 9e
Liepa AJ. Aust. J. Chem. 1981, 34: 2647Reference Ris Wihthout Link - 11
Doodeman R.Rutjes FPJT.Hiemstra H. Tetrahedron Lett. 2000, 41: 5979 - 12 Deprotection of TBS ethers by the
related trityl tetrafluoroborate has been reported with the anion
acting as a fluoride ion source. See:
Metcalf BW.Burkhart JP.Jund K. Tetrahedron Lett. 1980, 21: 35
References and Notes
General Procedure
(Table 1, Entry 3)
A mixture of powdered 3 Å MS,
trityl hexafluorophosphate (2.2 mmol), and the isoflavene 1b (503 mg, 1.55 mmol) in freshly distilled,
anhyd CH2Cl2 (50 mL, from CaH2)
was stirred at r.t. under nitrogen for 30 min. Trimethylsilyl cyanide
(0.480 g, 4.8 mmol) was then added, and the reaction mixture was
stirred for a further hour at r.t. The reaction mixture was then
filtered, washed with CH2Cl2, concentrated
under vacuum filtration, and subjected to silica gel chromatography,
using CH2Cl2 as the mobile phase to afford
the product as a colorless crystalline solid (431 mg, 80%).
General Procedure
(Table 2, Entry 1)
A mixture of powdered 3 Å MS,
trityl hexafluorophosphate (2.2 mmol), and the isoflavene 1b (451 mg, 1.39 mmol) in freshly distilled,
anhyd CH2Cl2 (50 mL, from CaH2)
was stirred at r.t. under nitrogen for 30 min. The commercially available
2-trimethylsilylthiazole (0.403g, 2.564 mmol) was then added and
the reaction mixture was stirred for a further hour at r.t. The
reaction mixture was then filtered, washed with CH2Cl2,
concentrated under vacuum filtration, and subjected to silica gel
chromatography, using CH2Cl2 as the mobile
phase to afford the product as a creamy white solid (430 mg, 76%).
Data for Selected
Compounds7-Acetoxy-3-
p
-acetoxyphenyl-2-cyano-2
H
-1-benzopyran (7b)
White
solid; mp 156-158 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 7.49
(d, J = 8.7
Hz, 2 H, H-2′/6′), 7.23 (d, J = 8.0 Hz,
1
H, H-5), 7.18 (d, J = 8.6
Hz, 2 H, H-3′/5′), 6.97 (s, 1 H, H4),
6.85 (dd, J = 2.5,
8.1 Hz, 1 H, H-6), 6.84 (s, 1 H, H-8), 6.01
(s, 1 H, H-2), 2.32 (s, 3 H, CH3), 2.30 (s, 3 H, CH3). ¹³C NMR
(75 MHz, CDCl3): δ = 169.1
(C=O), 168.9 (C=O), 151.9 (C7), 151.1 (C8a), 150.3
(C4′), 131.9 (C3), 128.3 (C5), 126.2 (C2′), 125.9
(C1′), 122.4 (C3′), 122.3 (C4), 119.1 (C4a), 117.0
(C6), 110.5 (C8), 64.3 (C2), 21.1 (CH3). MS (CI+): m/z (%) = 323
(100) [MH+ - HCN].
Anal. Calcd (%) for C20H15NO5:
C, 68.76; H, 4.33; N, 4.01. Found: C, 69.20; H, 4.34; N, 3.67.
7-Acetoxy-3-
p
-acetoxyphenyl-2-(2-thiazoyl)-2
H
-1-benzopyran
(8a)
Creamy white solid; mp 136-138 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.60
(br d, J = 2.7
Hz, 1 H, H-2′′), 7.37 (d, J = 8.7
Hz, 2 H, H-2′/6′), 7.23 (d, J = 6.3 Hz,
1 H, H-5), 7.08 (d, J = 2.7
Hz, 1 H, H-3′′), 6.93 (d, J = 8.4
Hz, 2 H, H-3′/5′), 6.89 (s, 1 H, H4),
6.57 (dd, J = 2.7,
8.4 Hz, 1 H, H-6), 6.53 (d, J = 2.4 Hz,
1 H,H-8), 6.44 (br s, 1 H, H-2), 2.13 (s, 3 H, CH3),
2.10 (s, 3 H, CH3). ¹³C
NMR (75 MHz, CDCl3): δ = 169.5
(C=O), 169.3 (C=O), 169.3 (C1′′),
151.8 (C7), 151.7 (C8a), 150.8 (C4′), 143.3 (C4′′),
134.0 (C3), 131.5 (C1′), 127.9 (C5), 126.9 (C2′),
122.2 (C3′), 121.1 (C3′′), 120.9 (C4),
120.2 (C4a), 115.7 (C6), 110.6 (C8), 74.7 (C2), 21.3 (CH3).
HRMS (CI+): m/z calcd
for [M + H]+ C22H17NO5S + H:
408.0906; found: 408.0887.
7-Acetoxy-3-
p
-acetoxyphenyl-2-ethoxy-2
H
-1-benzopyran
(8f)
Creamy white solid; mp 134-136 ˚C. ¹H
NMR (300 MHz, CDCl3): d = 7.53
(d, J = 9.0
Hz, 2 H, H-2′/6′), 7.23 (d, J = 8.4 Hz,
1 H, H-5), 7.12 (d, J = 8.4
Hz, 2 H, H-3′/5′), 6.98 (s, 1 H, H-4),
6.82 (d, J = 2.1
Hz, 1 H, H-8), 6.76 (dd, J = 8.4,
2.1 Hz, 1 H, H6), 5.95 (s, 1 H, H-2), 4.04-3.96 (m, 1 H,
OCH
2CH3), 3.82-3.74
(m, 1 H, OCH
2CH3),
2.32 (s, 3 H, CH
3CO), 2.30
(s, 3 H, CH
3CO), 1.25 (t, J = 7.2 Hz,
3 H, CH2CH
3). ¹³C
NMR (75 MHz, CDCl3): d = 169.5
(C=O), 169.3 (C=O), 151.4 (C7), 151.1 (C8a), 150.6
(C4′), 134.6 (C3), 129.7 (C1′), 128.0 (C5), 126.9
(C2), 122.1 (C3′), 121.5 (C4), 119.6 (C4a), 115.4 (C6),
110.4 (C8), 97.2 (C2), 64.1 (CH2CH3),
21.5 (CH3CO), 15.7 (CH2
CH3). MS (CI+): m/z (%) = 323
(100; 2-unsubstituted isoflavylium ion). Anal. Calcd (%)
for C21H20O6: C, 68.40; H, 5.48.
Found: C, 68.49; H, 5.53.
7-Acetoxy-3-
p
-acetoxyphenyl-2-[2-(7-acetoxy-3-
p
-acetoxyphenyl-2
H
-1-benzopyranyl)ethynyl]-2
H
-1-benzopyran
(9)
Solid; mp 237-238 ˚C
(dec.). ¹H NMR (300 MHz, DMF-d
6; integrations
and assignments for half dimer): d = 7.11
(d, J = 9.0
Hz, 2 H, H-2′/6′), 7.02 (d, J = 8.4 Hz,
1 H, H-5), 6.98 (s, 1 H, H4), 6.73 (dd, J = 2.4,
0.3 Hz, 1 H, H-8), 6.66 (d, J = 9.0 Hz,
1 H, H-3′), 6.53 (s, 1 H, H-2), 6.51 (dd, J = 8.4, 2.4
Hz, 1 H, H6), 1.94 (s, 3 H, CH3), 1.88 (s, 3 H, CH3). ¹³C NMR
(75 MHz, DMSO-d
6): d = 169.2
(C=O), 169.1 (C=O), 151.8 (C7), 150.8 (C8a), 150.2
(C4′), 133.0 (C3), 128.4 (C1′), 128.2 (C5), 126.4
(C2′), 122.2 (C4), 121.5 (C3′), 119.4 (C6), 116.3
(C4a), 110.7 (C8), 92.5 (ethynyl C), 91.7 (C2), 20.4 (CH3),
20.3 (CH3). MS (ES+): m/z (%) = 323
(100; 2-unsubstituted isoflavylium ion). Anal. Calcd (%)
for C41H34O10: C, 69.28; H, 4.60.
Found: C, 69.27; H, 4.62.