Synlett 2023; 34(19): 2346-2350
DOI: 10.1055/a-2159-4847
letter

Trimethylsilyl Azide Promoted Shono Oxidation of N,N-Dialkyl Amides

Wenlin Luo
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Ruixing Zhang
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Qi Xu
b   Nursing School of Nanchang University, Nanchang, 330031, P. R. of China
,
Shengyu Zheng
c   Institute for Advanced Study, Nanchang University, Nanchang, 330031, P. R. of China
,
Junpeng Yang
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Meixia Liu
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Shengmei Guo
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
,
Hu Cai
a   Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China
› Author Affiliations
We thank the National Science Foundation of China (21861024) for financial support.


Abstract

An alkoxylation of N,N-dialkyl amides by the Shono reaction has been developed that offers a simple and efficient way to access N-adjacent-carbon-substituted amides. TMSN3 plays an essential role in this transformation and permits the reaction to proceed with a broad substrate scope under mild conditions. This reaction proceeds at a lower current compared with the classical method and it affords the products in up to 91% yield. A possible mechanism is proposed based on control experiments.

Supporting Information



Publication History

Received: 24 June 2023

Accepted after revision: 23 August 2023

Accepted Manuscript online:
23 August 2023

Article published online:
04 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Seavill PW, Wilden JD. Green Chem. 2020; 22: 7737
    • 1b Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 1c de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 2a Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
    • 2b Shu X, Zhong D, Huang Q, Huan L, Huo H. Nat. Commun. 2023; 14: 125
    • 2c Wang X. Nat. Catal. 2019; 2: 98
    • 3a Katritzky AR, Pernak J, Fan WQ, Saczewski F. J. Org. Chem. 1991; 56: 4439
    • 3b Katritzky AR, Fan WQ, Black M, Pernak J. J. Org. Chem. 1992; 57: 547
    • 3c Bosset C, Beucher H, Bretel G, Pasquier E, Queguiner L, Henry C, Vos A, Edwards JP, Meerpoel L, Berthelot D. Org. Lett. 2018; 20: 6003
    • 3d Li L, Zhang G, Savateev A, Kurpil B, Antonietti M, Zhao Y. Asian J. Org. Chem. 2018; 7: 2464
    • 3e Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Nat. Commun. 2021; 12: 4342
    • 4a Huff CA, Cohen RD, Dykstra KD, Streckfuss E, DiRocco DA, Krska SW. J. Org. Chem. 2016; 81: 6980
    • 4b Novaes LF. T, Ho JS. K, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. J. Am. Chem. Soc. 2022; 144: 1187
    • 5a Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
    • 5b Singh MK, Akula HK, Satishkumar S, Stahl L, Lakshman MK. ACS Catal. 2016; 6: 1921
    • 6a Shimizu D, Kurose A, Nishikata T. Org. Lett. 2022; 24: 7873
    • 6b Modak A, Dutta U, Kancherla R, Maity S, Bhadra M, Mobin SM, Maiti D. Org. Lett. 2014; 16: 2602
    • 7a Liu L.-w, Wang Z.-z, Zhang H.-h, Wang W.-s, Zhang J.-z, Tang Y. Chem. Commun. 2015; 51: 9531
    • 7b Xia Q, Chen W. J. Org. Chem. 2012; 77: 9366
    • 7c Lv N, Yu S, Hong CD, Han D.-M, Zhang Y. Org. Lett. 2020; 22: 9308
    • 7d Song R.-J, Tu Y.-Q, Zhu D.-Y, Zhang F.-M, Wang S.-H. Chem. Commun. 2015; 51: 749
    • 7e Zhou J, Ren Q, Xu N, Wang C, Song S, Chen Z, Li J. Green Chem. 2021; 23: 5753
    • 7f Aruri H, Singh U, Kumar M, Sharma S, Aithagani SK, Gupta VK, Mignani S, Vishwakarma RA, Singh PP. J. Org. Chem. 2017; 82: 1000
    • 7g Luo Y, Hu M, Ge J, Li B, He L. Org. Chem. Front. 2022; 9: 1593
    • 8a Chao W, Weinreb SM. Tetrahedron Lett. 2000; 41: 9199
    • 8b Huang F.-Q, Dong X, Qi L.-W, Zhang B. Tetrahedron Lett. 2016; 57: 1600
    • 8c Huang F.-Q, Zhou G.-X, Dong X, Qi L.-W, Zhang B. Asian J. Org. Chem. 2016; 5: 192
    • 9a Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264
    • 9b Shono T, Matsumura Y, Tsubata K. J. Am. Chem. Soc. 1981; 103: 1172
    • 9c Suga S, Okajima M, Yoshida J.-i. Tetrahedron Lett. 2001; 42: 2173
    • 10a Gao P.-S, Weng X.-J, Wang Z.-H, Zheng C, Sun B, Chen Z.-H, You S.-L, Mei T.-S. Angew. Chem. Int. Ed. 2020; 59: 15254
    • 10b Feng T, Wang S, Liu Y, Liu S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202115178
  • 11 Frankowski KJ, Liu R, Milligan GL, Moeller KD, Aubé J. Angew. Chem. Int. Ed. 2015; 54: 10555
  • 12 Kabeshov MA, Musio B, Murray PR. D, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618
    • 13a Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
    • 13b Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
    • 13c Green RA, Brown RC. D, Pletcher D. Org. Process Res. Dev. 2015; 19: 1424
    • 13d Golub T, Becker JY. Electrochim. Acta 2016; 205: 207
    • 13e Golub T, Becker JY. Electrochim. Acta 2015; 173: 408
    • 13f Golub T, Becker JY. J. Electrochem. Soc. 2013; 160: G3123
    • 13g Lee D.-S. Tetrahedron: Asymmetry 2009; 20: 2014
    • 14a Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. J. Am. Chem. Soc. 2021; 143: 16580
    • 14b Alfonso-Súarez P, Kolliopoulos AV, Smith JP, Banks CE, Jones AM. Tetrahedron Lett. 2015; 56: 6863
    • 15a Nakai S, Yatabe T, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa J.-y, Mizuno N, Yamaguchi K. Angew. Chem. Int. Ed. 2019; 58: 16651
    • 15b Ding S, Jiao N. Angew. Chem. 2012; 124: 9360
    • 15c Ganiek MA, Becker MR, Berionni G, Zipse H, Knochel P. Chem. Eur. J. 2017; 23: 10280
    • 15d Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
    • 15e Shen Y, Rovis T. J. Am. Chem. Soc. 2021; 143: 16364
    • 15f Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
    • 15g Mandigma MJ. P, Zurauskas J, MacGregor CI, Edwards LJ, Shahin A, d’Heureuse L, Yip P, Birch DJ. S, Gruber T, Heilmann J, John MP, Barham JP. Chem. Sci. 2022; 13: 1912
    • 15h Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 6046
    • 15i Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 15j You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
  • 16 Wang Y, Wang N, Zhao J, Sun M, You H, Fang F, Liu Z.-Q. ACS Catal. 2020; 10: 6603
  • 17 General Procedure for Synthesis of 3<. 3a as an example. 1a (0.4 mmol), nBu4NBF4 (0.4 mmol), and CH3CN: MeOH (5.0 mL/5.0 mL) were added into an oven-dried three-necked flask (25 mL) with a stir bar. The flask was equipped with platinum electrodes (10 × 10 × 0.3 mm3) as the cathode and anode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA and air atmosphere under room temperature for 6 h. The mixture was washed with NaCl solution and then was extracted by EA. The combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent (Petroleum ether (PE)/EA = 2:1 to afford the corresponding product 3a as a colorless liquid, 91% yield. 1H NMR (400 MHz, CDCl3) δ 7.43–7.34 (m, 5 H), 4.91–4.52 (m, 2 H), 3.35–2.93 (m, 6 H); 13C NMR (101 MHz, CDCl3) δ 171.35, 131.51, 129.00, 124.39, 82.42, 55.22, 33.10. HRMS (ESI): m/z calcd for C10H13O2NNa [M+Na]+: 202.0844, found: 202.0839.