Synlett 2023; 34(17): 2042-2046
DOI: 10.1055/a-2131-3551
letter

Visible-Light-Driven Selenyl-Radical-Mediated Cascade Spirocyclization of 3-(2-Isocyanobenzyl)indoles with Diselenides

Tong-Yang Cao
,
Lin Qi
,
Yi-Chen Dong
,
Jie-Hui Cao
,
Li-Jing Wang
We thank the National Natural Science Foundation of China (No. 21702043), and the Hebei Province Natural Science Foundation (No. B2021201035) for financial support.


Abstract

We present a facile, visible-light-driven, selenyl-radical-mediated, cascade spirocyclization of 3-(2-isocyanobenzyl)indoles with diselenides that affords various selenylated spiro[indole-3,3′-quinoline] derivatives under mild conditions. This protocol has good functional-group tolerance and a broad substrate scope; both diaryl and dialkyl diselenides are tolerated.

Supporting Information



Publikationsverlauf

Eingereicht: 28. Mai 2023

Angenommen nach Revision: 17. Juli 2023

Accepted Manuscript online:
17. Juli 2023

Artikel online veröffentlicht:
31. August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
  • 2 Mugesh G, du Mont W.-W, Sies H. Chem. Rev. 2001; 101: 2125
  • 3 Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
  • 4 Sahu PK, Umme T, Yu J, Nayak A, Kim G, Noh M, Lee J.-Y, Kim D.-D, Jeong LS. J. Med. Chem. 2015; 58: 8734
  • 5 Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
  • 6 Angeli A, Tanini D, Nocentini A, Capperucci A, Ferraroni M, Gratteri P, Supuran CT. Chem. Commun. 2019; 55: 648
  • 7 Rampon DS, Rodembusch FS, Schneider JM. F. M, Bechtold IH, Gonçalves PF. B, Merlo AA, Schneider PH. J. Mater. Chem. 2010; 20: 715
  • 8 Samb I, Bell J, Toullec PY, Michelet V, Leray I. Org. Lett. 2011; 13: 1182
  • 9 Mugesh G, Singh HB. Chem. Soc. Rev. 2000; 29: 347
  • 10 Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
  • 11 Ortgies S, Breder A. ACS Catal. 2017; 7: 5828
  • 12 Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
  • 13 Makhal PN, Nandi A, Kaki VR. Chemistry Select 2021; 6: 663
  • 14 Sun K, Wang X, Li C, Wang H, Li L. Org. Chem. Front. 2020; 7: 3100
  • 15 An C, Li C.-Y, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2019; 6710
  • 16 Guo T, Wei X.-N, Liu Y, Zhang P.-K, Zhao Y.-H. Org. Chem. Front. 2019; 6: 1414
  • 17 Raji Reddy C, Subbarao M, Kolgave DH, Ajaykumar U, Vinaya PP. ACS Omega 2022; 7: 38045
  • 18 Zhang X, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Adv. Synth. Catal. 2020; 362: 5639
  • 19 Chen Z, Li J, Weng W, Xie X, Lei J. RSC Adv. 2022; 12: 28800
  • 20 Cui W, Li X, Guo G, Song X, Lv J, Yang D. Org. Lett. 2022; 24: 5391
  • 21 Rathore V, Kumar S. Green Chem. 2019; 21: 2670
  • 22 Roy M, Jamatia R, Samanta A, Mohar K, Srimani D. Org. Lett. 2022; 24: 8180
  • 23 Conner ES, Crocker KE, Fernando RG, Fronczek FR, Stanley GG, Ragains JR. Org. Lett. 2013; 15: 5558
  • 24 Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
  • 25 Chen Z, Zheng X, Zhou SF, Cui X. Org. Biomol. Chem. 2022; 20: 5779
  • 26 Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. J. Org. Chem. 2021; 86: 1273
  • 27 Ma X.-L, Wang Q, Feng X.-Y, Mo Z.-Y, Pan Y.-M, Chen Y.-Y, Xin M, Xu Y.-L. Green Chem. 2019; 21: 3547
  • 28 Zhou X.-J, Liu H.-Y, Mo Z.-Y, Ma X.-L, Chen Y.-Y, Tang H.-T, Pan Y.-M, Xu Y.-L. Chem. Asian J. 2020; 15: 1536
  • 29 Chen J.-M, Qi L, Zhang L, Li L.-J, Hou C.-Y, Li W, Wang L.-J. J. Org. Chem. 2020; 85: 10924
  • 30 Zhang L, Qi L, Chen J.-M, Dong W, Fang Z.-Y, Cao T.-Y, Li W, Wang L.-J. Chem. Commun. 2021; 57: 12655
  • 31 2-Methyl-2′-(phenylselanyl)-4′H-spiro[indole-3,3′-quinoline] (3a) DCM (2 mL) was added to 1a (0.2 mmol) and 2a (0.6 equiv) under air, and the stirred mixture was irradiated by a 455 nm blue COB LED at 25 ℃ for 18 h. When the reaction was complete (TLC), the reaction was quenched with H2O, and the mixture was extracted with EtOAc (3 × 25 mL). The combined organic layers were washed with H2O (25 mL) and sat. brine (25 mL), then dried (Na2SO4), concentrated in vacuo, and purified by chromatography [silica gel, EtOAc–PE (1:10 to 1:3)] to give a yellow liquid; yield: 52.2 mg (65%). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 7.6 Hz, 1 H), 7.51–7.49 (m, 2 H), 7.44 (td, J = 7.6, 1.6 Hz, 1 H), 7.34–7.31 (m, 3 H), 7.26–7.23 (m, 3 H), 7.15–7.11 (m, 2 H), 7.06 (d, J = 7.2 Hz, 1 H), 3.28 (d, J = 16.4 Hz, 1 H), 2.89 (d, J = 16.4 Hz, 1 H), 2.12 (s, 3 H). 13C {1H} NMR (100 MHz, CDCl3): δ = 180.4, 166.1, 156.1, 143.4, 139.9, 136.0, 129.8, 129.1, 128.7, 128.4, 127.9, 127.3, 127.0, 126.3, 126.3, 124.5, 123.7, 120.6, 65.1, 34.0, 18.0. HRMS (ESI-TLQ): m/z [M + H]+ calcd for C23H19N2Se: 403.0708; found: 403.0708.