Synlett 2023; 34(15): 1747-1751
DOI: 10.1055/a-2068-7065
synpacts

Accessing Aryldifluoromethyl Derivatives through Alkene Insertion into Benzylic C–F Bonds

Mengwei You
,
Tiancen Bian
,
Liejin Zhou
,
Zuxiao Zhang
We are grateful for financial support from the National Natural Science Foundation of China (22101258, 21901233) and a start-up grant from the Department of Chemistry, Zhejiang Normal University and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (No. 2022R01007).


Abstract

We report our formal insertion of alkenes into benzylic C–F bonds of electron-deficient perfluoroalkylarenes under organophotocatalytic conditions with Et3N·3HF as an external fluoride source. The absence of a fluoride scavenger or other external reductant permits the formation of a carbocation and its trapping by other nucleophiles. This three-component reaction represents one of the most efficient methods for preparing a variety of complex partially fluorinated organic molecules. This redox-neutral transformation features mild conditions, a broad substrate scope, and extraordinary functional-group tolerance. Moreover, several examples of modifications of complex drug molecules further demonstrated its utility.



Publication History

Received: 13 March 2023

Accepted after revision: 04 April 2023

Accepted Manuscript online:
04 April 2023

Article published online:
09 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
  • 2 Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Kirsch P. Wiley-VCH; Weinheim: 2004
  • 3 Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 4a Yoshida S, Shimomori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
    • 4b Munoz SB, Ni C, Zhang Z, Wang F, Shao N, Mathew T, Olah GA, Prakash GK. S. Eur. J. Org. Chem. 2017; 2322
    • 4c Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
    • 4d Yoshida S. Chem. Rec. 2023; in press DOI: 10.1002/tcr.202200308.
  • 5 Wang C, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
    • 6a Wang H, Jui N. J. Am. Chem. Soc. 2018; 140: 163
    • 6b Vogt D, Seath C, Wang H, Jui N. J. Am. Chem. Soc. 2019; 141: 13203
  • 7 Sap JB. I, Straathof NJ. W, Knauber T, Meyer C, Médebielle M, Bugiloni L, Genicot C, Trabanco AA, Noël T, am Ende CW, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 9181
  • 8 Luo Y.-C, Tong F.-F, Zhang Y.-X, He C.-Y, Zhang X.-G. J. Am. Chem. Soc. 2021; 143: 13971

    • For selected examples, see:
    • 9a Heinrich MR. Chem. Eur. J. 2009; 15: 820
    • 9b Jiang H, Studer A. Chem. Soc. Rev. 2020; 49: 1790
    • 9c Wang P.-Z, Xiao W.-J, Chen J.-R. Chin. J. Catal. 2022; 43: 548
    • 9d Gao P, Niu Y.-J, Yang F, Guo L.-N, Duan X.-H. Chem. Commun. 2022; 58: 730
    • 9e Campbell MW, Compton JS, Kelly CB, Molander GA. J. Am. Chem. Soc. 2019; 141: 20069
    • 9f Huang H.-M, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. J. Am. Chem. Soc. 2020; 142: 10173
    • 9g Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390
    • 9h Wang P.-Z, Gao Y, Chen J, Huan X.-D, Xiao W.-J, Chen J.-R. Nat. Commun. 2021; 12: 1815
    • 9i Lu F.-D, Lu L.-Q, He G.-F, Bai J.-C, Xiao W.-J. J. Am. Chem. Soc. 2021; 143: 4168
    • 9j Yan D.-M, Xu S.-H, Qian H, Gao P.-P, Bi M.-H, Xiao W.-J, Cheng J.-R. ACS Catal. 2022; 12: 3279
    • 9k Wei S, Zhang G, Wang Y, You M, Wang Y, Zhou L, Zhang Z. i-Science 2023; 26: 106137 DOI: 10.1016/j.isci.2023.106137.
    • 10a Mattay J, Runsink J, Rumbach T, Ly C, Gersdorf J. J. Am. Chem. Soc. 1985; 107: 2557
    • 10b Mattay J, Runsink J, Gersdorf J, Rumbaeh T, Ly C. Helv. Chim. Acta 1986; 69: 442
    • 10c Mezhenkova TV, Karpov VM, Zonov YV. J. Fluorine Chem. 2018; 207: 59
  • 11 Wang F, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 20616

    • For recent examples of fluorinations through radical-polar crossovers, see:
    • 12a Deng W.-L, Feng W.-W, Li Y.-J, Bao H.-L. Org. Lett. 2018; 20: 4245
    • 12b Xiong P, Long H, Xu H.-C. Asian J. Org. Chem. 2019; 8: 658
    • 12c Webb EW, Park JB, Cole EL, Donnelly DJ, Bonacorsi SJ, Ewing WR, Doyle AG. J. Am. Chem. Soc. 2020; 142: 9493
    • 12d Tang H.-J, Zhang B, Xue F, Feng C. Org. Lett. 2021; 23: 4040
    • 12e Qian H, Chen J, Zhang B, Cheng Y, Xiao W.-J, Chen J.-R. Org. Lett. 2021; 23: 6987