Synlett 2023; 34(15): 1739-1746
DOI: 10.1055/a-2065-4110
synpacts

Development of Silicon Nanowire Array–Metal Hybrid Catalysts for Batch and Flow Organic Reactions

Heeyoel Baek
,
Yoichi M. A. Yamada
We gratefully acknowledge financial support from AMED (grant no. 19ak0101115h), Japan Society for the Promotion of Science (JSPS; Grant-in-Aid for Scientific Research (B) 21H01979; The Grant-in-Aid for Transformative Research Areas (A) JP21A204, Digitalization-driven Transformative Organic Synthesis (Digi-TOS)), JST ACT-C (#JPMJCR12ZC), Fugaku Trust for Medical Research, and RIKEN.


Abstract

The development of highly efficient and reusable supported metal catalysts is important for academic and industrial synthetic organic chemistry; however, their widespread application remains a challenge because supported Pd, Rh, and Pt catalysts are expensive. To overcome these problems, we have developed novel, highly stable, reusable, and selective heterogeneous catalysts consisting of silicon nanowire arrays (SiNAs) and metal nanoparticle composites. Metal nanoparticles on SiNA have been applied as heterogeneous catalysts in the Mizoroki–Heck reaction, C–H arylation, hydrosilylation, hydrogenation, reductive alkylation of amines, and hydrogenative decarboxylation of fatty acids. The catalysts used in this study showed high catalytic activity in batch and microflow conditions. Their structural investigation using X-ray Photoelectron Spectroscopy (XPS) suggests that strong metallic bonding (alloy/agglomeration) between the metal and silicon (metal silicide bond formation) is key to the high catalyst stability.

1 Introduction

2 Development of Silicon Nanowire Array (SiNA) Hybrid Catalysts and Silicon Nanostructure (SiNS) Hybrid Catalysts

3 Application of SiNA-Pd to Organic Synthesis

4 SINA-Supported Mono- and Bimetallic Nanoparticles for Hydrogenation Reactions

5 Application of SiNA-Pd to Microflow Reductive Alkylation Reactions

6 Application of SiNA-Rh to Hydrogenative Decarboxylation Reactions using Microwave Irradiation

7 Conclusions



Publication History

Received: 07 March 2023

Accepted after revision: 29 March 2023

Accepted Manuscript online:
29 March 2023

Article published online:
26 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a ‘Metallic Nanomaterials’: Nanomaterials for the Life Sciences, Vol. 1. Kumar K. Wiley-VCH; Weinheim: 2008
    • 1b Nanoparticles and Catalysis . Astruc D. Wiley-VCH; Weinheim: 2008
  • 2 Chng LL, Erathodiyil N, Ying JY. Acc. Chem. Res. 2013; 46: 1825
  • 3 Yoshida J, Nagaki A, Yamada T. Chem. Eur. J. 2008; 14: 7450
  • 4 Jähnisch K, Hessel V, Löwe H, Baerns M. Angew. Chem. Int. Ed. 2004; 43: 406
  • 5 Baek H, Sato T, Uozumi Y, Yamada YM. A. Eur. J. Inorg. Chem. 2021; 708
    • 6a Oh I, Kye J, Hwang S. Nano Lett. 2012; 12: 298
    • 6b Fukami K, Koda R, Sakka T, Urata T, Amano K, Takaya H, Nakamura M, Ogata Y, Kinoshita M. Chem. Phys. Lett. 2012; 542: 99
    • 6c Tsujino K, Matsumura M. Adv. Mater. 2005; 17: 1045
    • 7a Bose SM, Behera SN, Roul BK. Mesoscopic, Nanoscopic and Macroscopic Materials 2009
    • 7b Niwano M, Miura T, Kimura Y, Tajima R, Miyamoto N. J. Appl. Phys. 1996; 79: 3708
    • 7c Schmidt V, Wittemann JV, Gösele U. Chem. Rev. 2010; 110: 361
    • 8a Ren Y, Wang Y, Li X, Zhang Z, Chi Q. New J. Chem. 2018; 42: 16694
    • 8b Wang K, Yu Z, Hu A, Hsu Y, Chen T, Lin C, Hu C, Yang Y, Chen T. RSC Adv. 2017; 7: 55110
    • 8c Li Z, Chen Y, Fu G, Chen Y, Sun D, Lee J, Tang Y. Nanoscale 2019, 11: 2974
  • 9 Sato T, Uozumi Y, Yamada YM. A. ACS Omega 2020; 5: 26938
  • 10 Hofmann S. Prog. Surf. Sci. 1991; 36: 35
  • 11 Chen L, Hunter GW, Neudeck PG, Knight D. J. Vac. Sci. Technol., A 1998; 16: 2890
  • 12 Molnár Á. Chem. Rev. 2011; 111: 2251
    • 13a Hamasaka G, Ichii S, Uozumi Y. Adv. Synth. Catal. 2018; 360: 1833
    • 13b Reetz MT, Westermann E. Angew. Chem. Int. Ed. 2000; 39: 165
  • 14 Yamada YM. A, Yuyama Y, Sato T, Fujikawa S, Uozumi Y. Angew. Chem. Int. Ed. 2014; 53: 127
  • 15 Loo MH, Egan D, Vaughan ED. Jr, Marion D, Felsen D, Weisman S. J. Urol. 1987; 137: 571
    • 16a Ackermann L, Vicente R, Kapdti AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 16b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 16c Zinovyeva VA, Vorotyntsev MA, Bezverkhyy I, Chaumont D, Hierso J. Adv. Funct. Mater. 2011; 21: 1064
  • 17 Benohoud M, Tuokko S, Pihko PM. Chem. Eur. J. 2011; 17: 8404
    • 18a Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley; New York: 2001
    • 18b Rylander PN. Hydrogenation Methods . Academic Press; New York: 1985
    • 18c Zhang L, Zhou M, Wang A, Zhang T. Chem. Rev. 2020; 120: 683
  • 19 Yang S, Cao C, Sun Y, Huang P, Wei F, Song W. Angew. Chem. Int. Ed. 2015; 54: 2661
  • 20 Yamada YM. A, Baek H, Sato T, Nakao A, Uozumi Y. Commun. Chem. 2020; 3: 81
    • 21a Besson M, Gallezot P, Pinel C. Chem. Rev. 2014; 114: 1827
    • 21b Pews-Davtyan A, Scharnagl FK, Hertrich MF, Kreyenschulte C, Bartling S, Lund H, Jackstell R, Beller M. Green Chem. 2019; 21: 5104
    • 21c Roach C, Feller SE, Ward JA, Shaikh SR, Zerouga M, Stillwell W. Biochemistry 2004; 43: 6344
  • 22 Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
  • 23 Laroche B, Ishitani H, Kobayashi S. Adv. Synth. Catal. 2018; 360: 4699
  • 24 Sato T, Uozumi Y, Yamada YM. A. ACS Omega 2020; 5: 26938
  • 25 Selt M, Bartlett CA, Harvery AR, Dunlop SA, Fitzgerald M. Brain Res. Bull. 2010; 81: 467
  • 26 Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. Science 2004; 304: 1305
  • 27 Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK. Chem. Commun. 2006; 2566
    • 28a Uozumi Y, Yamada YM. A, Beppu T, Fukuyama N, Ueno M, Kitamori T. J. Am. Chem. Soc. 2006; 128: 15994
    • 28b Yamada YM. A, Watanabe T, Torii K, Uozumi Y. Chem. Commun. 2009; 5594
    • 28c Yamada YM. A, Torii K, Uozumi Y. Beilstein J. Org. Chem. 2009; 5: 18
    • 28d Yamada YM. A, Watanabe T, Beppu T, Fukuyama N, Torii K, Uozumi Y. Chem. Eur. J. 2010; 16: 11311
    • 28e Yamada YM. A, Watanabe T, Ohno A, Uozumi Y. ChemSusChem 2012; 5: 293
    • 28f Yamada YM. A, Ohno A, Sato T, Uozumi Y. Chem. Eur. J. 2015; 21: 17269
    • 29a Hudson R, Hamasaka G, Osako T, Yamada YM. A, Li C, Uozumi Y, Moores A. Green Chem. 2013; 15: 2141
    • 29b Osako T, Torii K, Uozumi Y. RSC Adv. 2015; 5: 2647
    • 29c Osako T, Torii K, Tazawa A, Uozumi Y. RSC Adv. 2015; 5: 45760
    • 30a Hu H, Ota H, Baek H, Shinohara K, Mase T, Uozumi Y, Yamada YM. A. Org. Lett. 2020; 22: 160
    • 30b Baek H, Minakawa M, Yamada YM. A, Han JW, Uozumi Y. Sci. Rep. 2016; 6: 25925
    • 30c Minakawa M, Baek H, Yamada YM, Han JW, Uozumi Y. Org. Lett. 2013; 15: 5798
    • 31a Huber GW, Iborra S, Corma A. Chem. Rev. 2006; 106: 4044
    • 31b Zhao C, Brück T, Lercher JA. Green Chem. 2013; 15: 1720
  • 32 Vardon DR, Sharma BK, Jaramillo H, Kim D, Choe JK, Ciesielski PN, Strathmann TJ. Green Chem. 2014; 16: 1507
  • 33 Xu G, Zhang Y, Fu Y, Guo Q. ACS Catal. 2017; 7: 1158
    • 34a Wada Y, Tsubaki S, Maitani MM, Fujii S, Kishimoto F, Haneishi N. J. Jpn. Petrol. Inst. 2018; 61: 98
    • 34b Kishimoto F, Matsuhisa M, Imai T, Mochizuki D, Tsubaki S, Maitani MM, Suzuki E, Wada Y. J. Phys. Chem. Lett. 2019; 10: 3390
  • 35 Baek H, Kashimura K, Fujii T, Tsubaki S, Wada Y, Fujikawa S, Sato T, Uozumi Y, Yamada YM. A. ACS Catal. 2020; 10: 2148
  • 36 The reaction was carried out with E-max in TM010 mode and H-max in TM110 mode.
  • 37 Nishioka M, Miyakawa M, Kataoka H, Koda H, Sato K, Suzuki TM. Nanoscale 2011; 3: 2621