Synlett 2023; 34(09): 1001-1011
DOI: 10.1055/a-1998-7007
account

Bromine-Radical-Mediated Bromoallylation of C–C Unsaturated Bonds: A Facile Access to 1,4-, 1,5-, 1,6-, and 1,7-Dienes and Related Compounds

a   Research Division of Organic Materials, Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Osaka 536-8553, Japan
b   Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka 599-8531, Japan
,
Ilhyong Ryu
b   Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka 599-8531, Japan
c   Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
› Author Affiliations
This work was supported by a Grant-in-Aid B for Scientific Research from the Japan Society for the Promotion of Science (JSPS). I.R. acknowledges funding from the National Science and Technology Council (NSTC) (MOST-108-2113-M-009-007) and the Center for Emergent Functional Matter Science at National Yang Ming Chiao Tung University (NYCU) for additional support.


Abstract

The radical bromoallylation of alkynes, allenes, and vinylidene cyclopropanes proceeds efficiently in the presence of a radical initiator to give 2-bromo-substituted 1,4-, 1,5-, and 1,6-diene derivatives, respectively. Three-component reactions comprised of allenes, electron-deficient alkenes, and allyl bromides give 1,7-dienes in good yields. The bromoallylation of an arylalkene can override β-scission of the bromine radical from β-bromoalkyl radicals to give 5-bromoalkenes, whilst the bromoallylation of vinylcyclopropanes is accompanied by 5-exo ring closure to give 1-(bromomethyl)-2-vinylcyclopentane derivatives in good yields. All of the products contain a reactive vinyl bromide moiety, which can be readily functionalized by Pd-catalyzed cross-coupling and radical cascade reactions.

1 Introduction

2 Synthesis of 1,4-Dienes by Bromoallylation of Acetylenes

3 Synthesis of 1,5-Dienes by Bromoallylation of Allenes

4 Synthesis of 1,6-Dienes by Bromoallylation of Methylenecyclopropanes

5 Synthesis of 1,7-Dienes by Bromoallylation of Allenes and Electron-Deficient Alkenes

6 Bromoallylation of Arylalkenes and Vinylcyclopropanes

7 Conclusion



Publication History

Received: 07 November 2022

Accepted after revision: 15 December 2022

Accepted Manuscript online:
15 December 2022

Article published online:
13 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Wohl A. Ber. Dtsch. Chem. Ges. 1919; 52: 51
    • 2b Wohl A, Jaschinowski K. Ber. Dtsch. Chem. Ges. 1921; 54: 476
    • 2c Ziegler K, Späth A, Schaaf E, Schumann W, Winkelmann E. Justus Liebigs Ann. Chem. 1942; 551: 80

    • For reviews, see:
    • 2d Djerassi C. Chem. Rev. 1948; 43: 271
    • 2e Horner L, Winkelmann EH. Angew. Chem. 1959; 71: 349

      For recent work, see:
    • 3a Qu C.-H, Huang R, Liu Y, Liu T, Song G.-T. Org. Chem. Front. 2022; 9: 4135
    • 3b Wang Q.-L, Sun Z, Huang H, Mao G, Deng G.-J. Green Chem. 2022; 24: 3293
  • 4 Manabe Y, Kitawaki Y, Nagasaki M, Fukase K, Matsubara H, Hino Y, Fukuyama T, Ryu I. Chem. Eur. J. 2014; 20: 12750
    • 5a Talukdar R. Org. Biomol. Chem. 2020; 18: 8294
    • 5b Huan L, Shu X, Zu W, Zhong D, Huo H. Nat. Commun. 2021; 12: 3536
    • 5c Wang H, Liu H, Wang M, Huang M, Shi X, Wang T, Cong X, Yan J, Wu J. iScience 2021; 24: 102693
    • 5d Wang C, Shi H, Deng G.-J, Huang H. Org. Biomol. Chem. 2021; 19: 9177
    • 5e Dongbang S, Doyle AG. J. Am. Chem. Soc. 2022; 144: 20067
    • 5f Wang Q.-L, Huang H, Mao G, Deng G.-J. Green Chem. 2022; 24: 8324
  • 6 For the abstraction of allylic C–H bonds by bromine radicals, see: Sumino S, Fusano A, Ryu I. Org. Lett. 2013; 15: 2826

    • For a review on radical hydrobromination, see:
    • 7a Stacey FW, Harris JF. Jr. Org. React. 1963; 13: 150
    • 7b See also: Matsubara H, Tsukida M, Ishihara D, Kuniyoshi K, Ryu I. Synlett 2010; 13: 2014
    • 8a Kharasch MS, Sage M. J. Org. Chem. 1949; 14: 79
    • 8b Kharasch MS, Büchi G. J. Org. Chem. 1949; 14: 84
    • 8c Breuilles P, Uguen D. Tetrahedron Lett. 1990; 31: 357
    • 9a Tanko JM, Sadeghipour M. Angew. Chem. Int. Ed. 1999; 38: 159
    • 9b Struss JA, Sadeghipour M, Tanko JM. Tetrahedron Lett. 2009; 50: 2119
  • 10 Kippo T, Kimura Y, Ueda M, Fukuyama T, Ryu I. Synlett 2017; 28: 1733
    • 11a Ueda M, Maeda A, Hamaoka K, Sasano M, Fukuyama T, Ryu I. Synthesis 2019; 51: 1171
    • 11b Kippo T, Kimura Y, Maeda A, Matsubara H, Fukuyama T, Ryu I. Org. Chem. Front. 2014; 1: 755
  • 12 Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366
    • 13a Kippo T, Fukuyama T, Ryu I. Org. Lett. 2010; 12: 4006
    • 13b Kippo T, Hamaoka K, Ueda M, Fukuyama T, Ryu I. Tetrahedron 2016; 72: 7866
  • 14 Kippo T, Fukuyama T, Ryu I. Org. Lett. 2011; 13: 3864
  • 15 Kippo T, Hamaoka K, Ryu I. J. Am. Chem. Soc. 2013; 135: 632
  • 16 Kippo T, Ryu I. Chem. Commun. 2014; 50: 5993
  • 17 Kippo T, Hamaoka K, Ueda M, Fukuyama T, Ryu I. Org. Lett. 2017; 19: 5198
  • 18 Fukuyama T, Kippo T, Hamaoka K, Ryu I. Sci. China Chem. 2019; 62: 1525
    • 19a Walbiner M, Wu JQ, Fischer H. Helv. Chim. Acta 1995; 78: 910
    • 19b Zytowski T, Fischer H. J. Am. Chem. Soc. 1997; 119: 12869
    • 19c Fischer H, Radom L. Angew. Chem. Int. Ed. 2001; 40: 1340
    • 19d Fischer H, Radom L. Macromol. Symp. 2002; 182: 1
    • 20a Miura K, Saito H, Itoh D, Matsuda T, Fujisawa N, Wang D, Hosomi A. J. Org. Chem. 2001; 66: 3348
    • 20b Miura K, Saito H, Fujisawa N, Wang D, Nishikori H, Hosomi A. Org. Lett. 2001; 3: 4055
  • 21 SOLARBOX 1500, is a solar simulator fitted with a 1.5 kW xenon lamp. We set the light intensity to 350 W/m2 (300–800 nm) for the experiments; see: https://cofomegra.it/en/solarbox-1500-3000 (accessed Dec. 30, 2022)
    • 22a Taylor DR. Chem. Rev. 1967; 67: 317
    • 22b Pasto DJ. Tetrahedron 1984; 40: 2805
    • 22c Modern Allene Chemistry, Vols. 1 and 2. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 22d Ma S. Chem. Rev. 2005; 105: 2829
    • 22e Ma S. Aldrichimica 2007; 40: 91

      For radical hydrobromination of allenes, see:
    • 23a Kovachic D, Leitch LC. Can. J. Chem. 1961; 39: 363
    • 23b Griesbaum K, Oswald AA, Hall DN. J. Org. Chem. 1964; 29: 2404
    • 23c Abell PI, Anderson RS. Tetrahedron Lett. 1964; 5: 3727
    • 23d Tien RY, Abell PI. J. Org. Chem. 1970; 35: 956
    • 23e Moorthy SN, Singh A, Devaprabhakara D. J. Org. Chem. 1975; 40: 3452

      For selected reviews, see:
    • 24a Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 24b Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 24c Brandi A, Cicchi S, Cordero FM, Goti A. Chem. Rev. 2014; 114: 7317
  • 25 For radical bromination of methylenecyclopropanes, see: Yu L, Chen B, Huang X, Wu LL. Chin. Chem. Lett. 2007; 18: 121

    • For reviews on radical carbonylation, see:
    • 26a Ryu I, Sonoda N. Angew. Chem. Int. Ed. 1996; 35: 1050
    • 26b Ryu I. Chem. Soc. Rev. 2001; 30: 16
    • 26c Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 26d Matsubara H, Kawamoto T, Fukuyama T, Ryu I. Acc. Chem. Res. 2018; 51: 2023
    • 26e Kawamoto T, Fukuyama T, Picard B, Ryu I. Chem. Commun. 2022; 58: 7608
    • 26f For a review on acyl radicals, see: Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
  • 27 Sumino S, Fukuyama T, Ryu I. In The Chemical Transformations of C1 Compounds, Vol. 2. Ding K, Wu X.-F, Han B, Liu Z. Wiley-VCH; Weinheim: 2022: 567
    • 28a Maillard B, Forrest D, Ingold KU. J. Am. Chem. Soc. 1976; 98: 7024
    • 28b Newcomb M, Glenn AG. J. Am. Chem. Soc. 1989; 111: 275
    • 28c Hollis R, Hughes L, Bowry VW, Ingold KU. J. Org. Chem. 1992; 57: 4284
    • 28d Horner JH, Tanaka N, Newcomb M. J. Am. Chem. Soc. 1998; 120: 10379

      For reviews, see:
    • 29a Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
    • 29b Fusano A, Ryu I. In Science of Synthesis: Multicomponent Reactions 2 . Muller TJ. J. Georg Thieme Verlag; Germany: 2014: 409
    • 29c Godineau E, Landais Y. Chem. Eur. J. 2009; 15: 3044
  • 30 Mizuno K, Ikeda M, Toda S, Otsuji Y. J. Am. Chem. Soc. 1988; 110: 1288
  • 31 For bromine-radical-catalyzed [3+2] cyclizations of vinylidene cyclopropanes with alkenes, see: Chen D.-F, Chrisman CH, Miyake GM. ACS Catal. 2020; 10: 2609
    • 32a Feldman KS, Romanelli AL, Ruckle RE. Jr, Miller RF. J. Am. Chem. Soc. 1988; 110: 3300
    • 32b Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett. 1988; 29: 5135
    • 32c Feldman KS, Romanelli AL, Ruckle RE. Jr, Jean G. J. Org. Chem. 1992; 57: 100
    • 32d Hashimoto T, Kawamata Y, Maruoka K. Nat. Chem. 2014; 6: 702
    • 33a Curran DP, Xu J, Lazzarini E. J. Am. Chem. Soc. 1995; 117: 6603
    • 33b Curran DP, Xu J, Lazzarini E. J. Chem. Soc., Perkin Trans. 1 1995; 3049