Synlett 2023; 34(02): 149-152
DOI: 10.1055/a-1957-4104
letter

Rapid Access to Functionalized γ-Lactams through Copper-Catalyzed Oxidative Cyclization of Diynes

Ting-Ting Zhang
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Kua-Fei Wei
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Guang-Xin Ru
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Xiu-Hong Zhu
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Li-Xia Xie
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Wen-Bo Shen
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
› Author Affiliations
We are grateful for the financial support from the NNSFC (22001059) and the Top-Notch Talents Program of Henan Agricultural University (30500739).


Abstract

An efficient copper-catalyzed oxidative cyclization of diynes is described. A range of functionalized γ-lactams can be readily constructed by using this protocol. This copper-catalyzed oxidative process proceeds through an alkyne oxidation, carbene/alkyne metathesis, and donor–donor carbene oxidation sequence. The use of readily available substrates, high flexibility, a simple procedure, and mild reaction conditions render the procedure a viable alternative for the preparation of functionalized γ-lactams.

Supporting Information



Publication History

Received: 13 September 2022

Accepted after revision: 07 October 2022

Accepted Manuscript online:
07 October 2022

Article published online:
21 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Feng Z, Chu F, Guo Z, Sun P. Bioorg. Med. Chem. Lett. 2009; 19: 2270
    • 1b Grunwald C, Rundfeldt C, Lankau H.-J, Arnold T, Höfgen N, Dost R, Egerland U, Hofmann H.-J, Unverferth K. J. Med. Chem. 2006; 49: 1855
    • 1c Reddy TR. K, Li C, Guo X, Myrvang HK, Fischer PM, Dekker LV. J. Med. Chem. 2011; 54: 2080
    • 1d Ewies EF, Elsayed NF, Boulos LS, Soliman A.-MM. J. Chem. Res. 2014; 38: 325
    • 1e Lampe JW, Chou Y.-L, Hanna RG, Di Meo SV, Erhardt PW, Hagedorn AA. III, Ingebretsen WR, Cantor E. J. Med. Chem. 1993; 36: 1041

      For recent selected examples, see:
    • 2a Kweon J, Chang S. Angew. Chem. Int. Ed. 2021; 60: 2909
    • 2b Fukuyama T, Nakashima N, Okada T, Ryu I. J. Am. Chem. Soc. 2013; 135: 1006
    • 2c Holstein PM, Dailler D, Vantourout J, Shaya J, Millet A, Baudoin O. Angew. Chem. Int. Ed. 2016; 55: 2805
    • 2d del Corte X, Maestro A, Vicario J, Martinez de Marigorta E, Palacios F. Org. Lett. 2018; 20: 317
    • 2e Cao X, Cheng X, Xuan J. Org. Lett. 2018; 20: 449
    • 2f Shao N.-Q, Chen Y.-H, Li C, Wang D.-H. Org. Lett. 2020; 22: 7141
    • 2g Torelli A, Whyte A, Polishchuk I, Bajohr J, Lautens M. Org. Lett. 2020; 22: 7915
    • 3a Ye L, Zhang G, Zhang L. J. Am. Chem. Soc. 2010; 132: 3258
    • 3b Li L, Shu C, Zhou B, Yu Y.-F, Xiao X.-Y, Ye L.-W. Chem. Sci. 2014; 5: 4057
    • 3c Vasu D, Hung H.-H, Bhunia S, Gawade SA, Das A, Liu R.-S. Angew. Chem. Int. Ed. 2011; 50: 6911
    • 3d Chen J.-J, Liu J.-Y, Cao X.-X, Hu J.-X, Lu X, Shen W.-B, Sun Q, Song R.-J, Li J.-H. Org. Chem. Front. 2022; 9: 5168

      For reviews, see:
    • 4a Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Chem. Rev. 2021; 121: 8979
    • 4b Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 4c Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
    • 4d Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 4e Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 4f Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2020; 121: 9039
    • 4g Shen W.-B, Tang X.-T. Org. Biomol. Chem. 2019; 17: 7106
    • 4h Ru G.-X, Zhang T.-T, Zhang M, Jiang X.-L, Wan Z.-K, Zhu X.-H, Shen W.-B, Gao G.-Q. Org. Biomol. Chem. 2021; 19: 5274
    • 4i Huple DB, Ghorpade S, Liu R.-S. Adv. Synth. Catal. 2016; 358: 1348
    • 4j Xiao J, Li X. Angew. Chem. Int. Ed. 2011; 50: 7226
    • 4k Bhunia S, Ghosh P, Patra SR. Adv. Synth. Catal. 2020; 362: 3664
  • 5 For a recent selected example, see: Liu R, Winston-McPherson GN, Yang Z.-Y, Zhou X, Song W, Guzei IA, Xu X, Tang W. J. Am. Chem. Soc. 2013; 135: 8201
  • 6 Shen W.-B, Zhang T.-T, Zhang M, Wu J.-J, Jiang X.-L, Ru G.-X, Gao G.-Q, Zhu X.-H. Org. Chem. Front. 2021; 8: 4960
  • 7 Nösel P, Nunes dos Santos Comprido L, Lauterbach T, Rudolph M, Rominger F, Hashmi AS. K. J. Am. Chem. Soc. 2013; 135: 15662

    • For recent selected examples, see:
    • 8a Zheng Z, Zhang L. Org. Chem. Front. 2015; 2: 1556
    • 8b Ye L, Wang Y, Aue DH, Zhang L. J. Am. Chem. Soc. 2012; 134: 31

      For recent selected examples, see:
    • 9a Ji K, Liu X, Du B, Yang F, Gao J. Chem. Commun. 2015; 51: 10318
    • 9b Li J, Xing H.-W, Yang F, Chen Z.-S, Ji K. Org. Lett. 2018; 20: 4622
  • 10 Hamada N, Yamaguchi A, Inuki S, Oishi S, Ohno H. Org. Lett. 2018; 20: 4401
  • 11 Zhao J, Xu W, Xie X, Sun N, Li X, Liu Y. Org. Lett. 2018; 20: 5461

    • For recent selected examples, see:
    • 12a Skaria M, Hsu Y.-C, Jiang Y.-T, Lu M.-Y, Kuo T.-C, Cheng M.-J, Liu R.-S. Org. Lett. 2020; 22: 4478
    • 12b Pandit YB, Liu R.-S. Adv. Synth. Catal. 2020; 362: 3183

      For recent selected examples, see:
    • 13a Shen W.-B, Sun Q, Li L, Liu X, Zhou B, Yan J.-Z, Lu X, Ye L.-W. Nat. Commun. 2017; 8: 1748
    • 13b Shu C, Shi C.-Y, Sun Q, Zhou B, Li T.-Y, He Q, Lu X, Liu R.-S, Ye L.-W. ACS Catal. 2019; 9: 1019
    • 13c Liu X, Wang Z.-S, Zhai T.-Y, Luo C, Zhang Y.-P, Chen Y.-B, Deng C, Liu R.-S, Ye L.-W. Angew. Chem. Int. Ed. 2020; 59: 17984
  • 14 Prabagar B, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew. Chem. Int. Ed. 2019; 58: 2365

    • For recent selected examples, see:
    • 15a Shen W.-B, Tang X.-T, Zhang T.-T, Liu S.-Y, He J.-M, Su T.-F. Org. Lett. 2020; 22: 6799
    • 15b Shen W.-B, Tang X.-T, Zhang T.-T, Lv D.-C, Zhao D, Su T.-F, Meng L. Org. Lett. 2021; 23: 1285
    • 15c Ru G.-X, Zhang M, Zhang T.-T, Jiang X.-L, Gao G.-Q, Zhu X.-H, Wang S, Fan C.-L, Li X, Shen W.-B. Org. Chem. Front. 2022; 9: 2621
    • 15d Zheng Y, Zhang T.-T, Shen W.-B. Org. Biomol. Chem. 2021; 19: 9688
    • 15e Gao G.-Q, Ma G, Jiang X.-L, Liu Q, Fan C.-L, Lv D.-C, Su H, Ru G.-X, Shen W.-B. Org. Biomol. Chem. 2022; 20: 5035
    • 15f Tang X.-T, Yang F, Zhang T.-T, Liu Y.-F, Liu S.-Y, Su T.-F, Lv D.-C, Shen W.-B. Catalysts 2020; 10: 350
  • 16 Prabagar B, Nayak S, Prasad R, Sahoo AK. Org. Lett. 2016; 18: 3066
  • 17 4-Benzoyl-3-phenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-one (3a); Typical Procedure A mixture of sulfonamide 1a (0.2 mmol, 77.0 mg), 3,5-dichloropyridine N-oxide (2a, 0.6 mmol, 98.4 mg), and Cu(MeCN)4PF6 (0.02 mmol, 7.5 mg) in DCE (4.0 mL) was heated at 80 °C (heating mantle temperature) until the reaction was complete (TLC; typically 2 h). The mixture was then concentrated, and the residue was purified by chromatography [silica gel, PE–EtOAc (5:1)] to give a pale-yellow oil; yield: 71.2 mg (85%). IR (neat): 2923, 1724, 1653, 1596, 1493, 1448, 1365, 1328, 1254, 1188, 1172, 1115, 1090, 963, 667 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.04 (d, J = 7.6 Hz, 2 H), 7.67 (d, J = 7.3 Hz, 2 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.37 (d, J = 7.6 Hz, 2 H), 7.29–7.26 (m, 4 H), 7.21–7.13 (m, 3 H), 4.80 (s, 2 H), 2.44 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 192.5, 166.6, 147.6, 145.6, 136.4, 134.8, 134.4, 134.2, 129.9, 129.7, 129.4, 129.2, 128.7, 128.6, 128.4, 128.3, 50.6, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C24H20NO4S: 418.1108; found: 418.1106.