Synlett 2023; 34(07): 759-776
DOI: 10.1055/a-1928-3466
account
Chemical Synthesis and Catalysis in India

Transition-Metal-Catalyzed Directing-Group-Assisted C4-H Carbon–Carbon Bond Formation of Indole

Shubhajit Basak
,
Tripti Paul
,
Prabhat Kumar Maharana
,
Bijoy Debnath
,
S.B and P.K.M thank (DST) for INSPIRE Senior Research Fellowship. T. Paul is thankful to the Ministry of Education (MoE) for a Prime Minister’s Research Fellowship (PMRF). B.D acknowledges the University Grant Commission (UGC) for a Senior Research Fellowship.


Abstract

C4-Functionalized indole scaffolds are ubiquitous in natural products, bioactive compounds, and pharmaceuticals. Much effort has thus been made to develop effective synthetic strategies for C4 functionalization of the indole core. Among them, chelation-assisted synthetic approaches using transition-metal catalysis for the C4-selective C–H functionalization of indole is attractive. This account highlights progress made in C4-carbon–carbon bond formation of indole using directing-group-assisted transition-metal-catalyzed C–H functionalization (up to May 2022). These studies have been performed using Ru, Rh, Pd and Ir-based catalytic systems, while attention has been focused on the use of first-row abundant catalytic systems.

1 Introduction

2 Alkylation

3 Acylation

4 Alkenylation

5 Alkynylation

6 Allylation

7 Annulation

8 Arylation

9 Conclusion and Outlook



Publication History

Received: 14 June 2022

Accepted after revision: 19 August 2022

Accepted Manuscript online:
19 August 2022

Article published online:
28 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 2b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 2c Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
    • 2d Thanikachalam PV, Maurya RK, Garg V, Monga V. Eur. J. Med. Chem. 2019; 180: 562
    • 3a Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 3b Shiri M. Chem. Rev. 2012; 112: 3508
    • 3c Pitts AK, O’Hara F, Snell RH, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 5451
    • 3d Urbina K, Tresp D, Sipps K, Szostak M. Adv. Synth. Catal. 2021; 363: 2723
    • 4a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 960
    • 4b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 4c Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
    • 4d Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 5a Lebrasseur N, Larrosa I. J. Am. Chem. Soc. 2008; 130: 2926
    • 5b Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 5c Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 5d Deka B, Deb ML, Baruah PK. Top. Curr. Chem. 2020; 378: 22
    • 6a Shetty RS, Lee Y, Liu B, Husain A, Joseph RW, Lu Y, Nelson D, Mihelcic J, Chao W, Moffett KK, Schumacher A, Flubacher D, Stojanovic A, Bukhtiyarova M, Williams K, Lee K.-J, Ochman AR, Saporito MS, Moore WR, Flynn GA, Dorsey BD, Springman EB, Fujimoto T, Kelly MJ. J. Med. Chem. 2011; 54: 179
    • 6b Liu H, Jia Y. Nat. Prod. Rep. 2017; 34: 411
    • 6c Liu H, Chen L, Yuan K, Jia Y. Angew. Chem. Int. Ed. 2019; 58: 6362
    • 7a Hollins RA, Colnago LA, Salim VM, Seidl MC. J. Heterocycl. Chem. 1979; 16: 993
    • 7b Brown MA, Kerr MA. Tetrahedron Lett. 2001; 42: 983
    • 7c Beswick PJ, Greenwood CS, Mowlem TJ, Nechvatal G, Widdowson DA. Tetrahedron 1988; 44: 7325
    • 7d Gritsch PJ, Leitner C, Pfaffenbach M, Gaich T. Angew. Chem. Int. Ed. 2014; 53: 1208
  • 8 Kalepu J, Gandeepan P, Ackermann L, Pilarski LT. Chem. Sci. 2018; 9: 4203
    • 9a Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
    • 9b Yang Y, Shi Z. Chem. Commun. 2018; 54: 1676
    • 9c Shah TA, De PB, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 572
    • 9d Pradhan S, De PB, Shah TA, Punniyamurthy T. Chem. Asian J. 2020; 15: 4184
    • 9e Wen J, Shi Z. Acc. Chem. Res. 2021; 54: 1723
    • 9f Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
  • 10 Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
  • 11 Borah AJ, Shi Z. Chem. Commun. 2017; 53: 3945
  • 12 Potter TJ, Kamber DN, Mercado BQ, Ellman JA. ACS Catal. 2017; 7: 150
  • 13 Chen X, Zheng G, Li Y, Song G, Li X. Org. Lett. 2017; 19: 6184
  • 14 Biswas A, Samanta R. Eur. J. Org. Chem. 2018; 1426
  • 15 Sherikar MS, Kapanaiah R, Lanke V, Prabhu KR. Chem. Commun. 2018; 54: 11200
  • 16 Kona CN, Nishii Y, Miura M. Org. Lett. 2020; 22: 4806
  • 17 Pradhan S, Mishra M, De PB, Banerjee S, Punniyamurthy T. Org. Lett. 2020; 22: 1720
    • 18a Sherikar MS, Devarajappa R, Prabhu KR. J. Org. Chem. 2020; 85: 5516
    • 18b Pan C, Huang G, Shan Y, Li Y, Yu J.-T. Org. Biomol. Chem. 2020; 18: 3038
  • 19 Banjare SK, Nanda T, Pati BV, Adhikari GK. D, Dutta J, Ravikumar PC. ACS Catal. 2021; 11: 11579
  • 20 Ahmad A, Dutta HS, Kumar M, Raziullah Raziullah, Gangwar MK, Koley D. Org. Lett. 2022; 24: 2783
  • 21 Zhang S, An B, Li J, Hu J, Huang L, Li X, Chan AS. C. Org. Biomol. Chem. 2017; 15: 7404
    • 22a Zhang J, Wu M, Fan J, Xu Q, Xie M. Chem. Commun. 2019; 55: 8102
    • 22b Chai X.-Y, Xu H.-B, Dong L. Chem. Eur. J. 2021; 27: 13123
  • 24 Chen H, Lin C, Xiong C, Liua Z, Zhang Y. Org. Chem. Front. 2017; 4: 455
    • 25a Lv J, Wang B, Yuan K, Wang Y, Jia Y. Org. Lett. 2017; 19: 3664
    • 25b Okada T, Sakai A, Hinoue T, Satoh T, Hayashi Y, Kawauchi S, Chandrababunaidu K, Miura M. J. Org. Chem. 2018; 83: 5639
    • 25c Kona CN, Nishii Y, Miura M. Org. Lett. 2018; 20: 4898
  • 26 Sherikar MS, Kapanaiah R, Lanke V, Prabhu KR. Chem. Commun. 2018; 54: 11200
  • 27 Thrimurtulu N, Dey A, Singh A, Pal K, Maiti D, Volla CM. R. Adv. Synth. Catal. 2019; 361: 1441
  • 28 Banjare SK, Nanda T, Ravikumar PC. Org. Lett. 2019; 21: 8138
  • 29 Pradhan S, Mishra M, De PB, Banerjee S, Punniyamurthy T. Org. Lett. 2020; 22: 1720
    • 30a Li X, Liu G, Zhu Z, Huo Y, Jiang H. J. Org. Chem. 2017; 82: 13003
    • 30b Wu G, Ouyang W, Chen Q, Huo Y, Li X. Org. Chem. Front. 2019; 6: 284
    • 30c Kona CN, Nishii Y, Miura M. Angew. Chem. Int. Ed. 2019; 58: 9856
  • 31 Chai X.-Y, Xu H.-B, Dong L. Chem. Eur. J. 2021; 27: 13123
  • 32 Pradhan S, De PB, Punniyamurthy T. Org. Lett. 2019; 21: 9898
  • 33 Zhang S.-S, Liu Y.-Z, Zheng Y.-C, Xie H, Chen S.-Y, Song J.-L, Shu B. Adv. Synth. Catal. 2022; 364: 64
    • 34a Mascal M, Modes KV, Durmus A. Angew. Chem. Int. Ed. 2011; 50: 4445
    • 34b Huters AD, Quasdorf KW, Styduhar ED, Garg NK. J. Am. Chem. Soc. 2011; 133: 15797
    • 34c Ferlin MG, Carta D, Bortolozzi R, Ghodsi R, Chimento A, Pezzi V, Moro S, Hanke N, Hartmann RW, Basso G, Viola G. J. Med. Chem. 2013; 56: 7536
  • 35 Liu X, Li G, Song F, You J. Nat. Commun. 2014; 5: 5030
  • 36 Zhou T, Lia B, Wang B. Chem. Commun. 2017; 53: 6343
  • 37 Bettadapur KR, Kapanaiah R, Lanke V, Prabhu KR. J. Org. Chem. 2018; 83: 1810
  • 38 Harada S, Yanagawa M, Nemoto T. ACS Catal. 2020; 10: 11971
    • 39a Okano K, Fujiwara H, Noji T, Fukuyama T, Tokuyama H. Angew. Chem. Int. Ed. 2010; 49: 5925
    • 39b Zhang W, Ready JM. J. Am. Chem. Soc. 2016; 138: 10684
    • 39c Banne S, Reddy DP, Li W, Wang C, Guo J, He Y. Org. Lett. 2017; 19: 4996
    • 40a Liu X.-H, Park H, Hu J.-H, Hu Y, Zhang Q.-L, Wang B.-L, Sun B, Yeung K.-S, Zhang F.-L, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 888
    • 40b Yang Y, Gao P, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 3966
  • 41 Simonetti M, Cannas DM, Panigrahi A, Kujawa S, Kryjewski M, Xie P, Larrosa I. Chem. Eur. J. 2017; 23: 549
  • 42 Li P.-G, Yang Y, Zhu S, Li H.-X, Zou L.-H. Eur. J. Org. Chem. 2019; 73
    • 43a Thrimurtulu N, Dey A, Singh A, Pal K, Maiti D, Volla CM. R. Adv. Synth. Catal. 2019; 361: 1441
    • 43b Chen S, Zhang M, Su R, Chen X, Feng B, Yang Y, You J. ACS Catal. 2019; 9: 6372
    • 43c Cheng Y, Yu S, He Y, An G, Li G, Yang Z. Chem. Sci. 2021; 12: 3216
  • 44 Basak S, Paul T, Punniyamurthy T. Org. Lett. 2022; 24: 554
  • 45 Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. J. Org. Chem. 2022; in press DOI: 10.1021/acs.joc.2c00716.