Synthesis 2022; 54(23): 5203-5214
DOI: 10.1055/a-1915-7916
feature

Iron-Catalyzed Benzene Ring Expansion of α-Azido-N-phenylamides

Kaijie Wei
,
Menglu Jiang
,
Siyu Liang
,
Wei Yu
The authors are grateful to the National Natural Science Foundation of China (No. 21772077) and the State Key Laboratory of Applied Organic Chemistry for financial support.


Abstract

Nitrenoid-mediated C–H insertion and cycloaddition reactions are gaining increasing importance in modern organic synthesis. However, the nitrene-mediated benzene ring expansion, which constitutes a potent tool for breaking the benzene ring, has sparely been explored for synthetic purposes. Herein we report that nitrene cycloaddition to the benzene ring can be enabled intramolecularly by iron catalysis. By using FeCl2 and N-heterocyclic carbene SIPr·HCl as the catalyst, α-azido-N-phenylamides can be converted into 1,3-dihydro-2H-azepin-2-ones in good yields through a novel skeleton rearrangement. The rearrangement features a cascade of nitrene cycloaddition, C–N cleavage, water addition, and electrocyclic ring-opening. In the case that the N-phenyl ring is substituted with a methoxy group at the meta or para position, azepin-2-one-fused imidazolinones can also be obtained. The present reactions provide an effective method for benzene ring expansion as well as for the preparation of azepin-2-one compounds.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Juni 2022

Angenommen nach Revision: 02. August 2022

Accepted Manuscript online:
02. August 2022

Artikel online veröffentlicht:
09. September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Azides and Nitrenes: Reactivity and Utility . Scriven EF. V. Academic Press; New York: 1984
  • 2 Gritsan N, Platz M. Photochemistry of Azides: The Azide/Nitrene Interface. In Organic Azides: Syntheses and Applications. Bräse S, Banert K. John Wiley & Sons; Chichester: 2010: 311-372
    • 3a Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
    • 3b Suarez AI. O, Lyaskovskyy V, Reek JN. H, van der Vlugt JI, de Bruin B. Angew. Chem. Int. Ed. 2013; 52: 12510
  • 4 Chang WW, Ton TM. U, Chan PW. Chem. Rec. 2011; 11: 331
    • 5a Cenini S, Gallo E, Caselli A, Ragaini F, Fantauzzi S, Piangiolino C. Coord. Chem. Rev. 2006; 250: 1234
    • 5b Driver TG. Org. Biomol. Chem. 2010; 8: 3831
    • 5c Uchida T, Katsuki T. Chem. Rec. 2014; 14: 117
    • 5d Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440
    • 5e Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
  • 7 Damiano C, Intrieri D, Gallo E. Inorg. Chim. Acta 2018; 470: 51
  • 8 Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 9a Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
    • 9b Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 9c Organic Azides: Syntheses and Applications . Bräse S, Banert K. John Wiley & Sons; Chichester: 2010
    • 10a Bach T, Körber C. Tetrahedron Lett. 1998; 39: 5015
    • 10b Bach T, Körber C. Eur. J. Org. Chem. 1999; 1033
    • 10c Bach T, Schlummer B, Harms K. Chem. Commun. 2000; 287

      For reviews, see:
    • 11a Zhang L, Deng L. Chin. Sci. Bull. 2012; 57: 2352
    • 11b Wang P, Deng L. Chin. J. Chem. 2018; 36: 1222
    • 11c Plietker B, Röske A. Catal. Sci. Technol. 2019; 9: 4188
    • 11d Liu Y, You T, Wang TT, Che CM. Tetrahedron 2019; 75: 130607
  • 12 Lwowski W. Acyl Azides and Nitrenes . In Azides and Nitrenes: Reactivity and Utility . Scriven EF. V. Academic Press; New York: 1984: 205-246
    • 13a Budyka ΜF, Kantor Μ. Μ, Alfimov ΜV. Russ. Chem. Rev. 1992; 61: 48
    • 13b Gritsan Ν. Ρ, Pritchina ΕA. Russ. Chem. Rev. 1992; 61: 910
    • 13c Bou-Hamdan FR, Levesque F, O’Brien AG, Seeberger PH. Beilstein J. Org. Chem. 2011; 7: 1124
  • 14 For a recent study on azide-enabled ring-opening of benzene ring, see: Qiu X, Sang Y, Wu H, Xue X.-S, Yan Z, Wang Y, Cheng Z, Wang X, Tan H, Song S, Zhang G, Zhang X, Houk KN, Jiao N. Nature 2021; 597: 64
  • 15 Kyba EP. Alkyl Azides and Nitrenes . In Azides and Nitrenes: Reactivity and Utility . Scriven EF. V. Academic Press; New York: 1984: 1-34
    • 16a Zhao X, Liang S, Fan X, Yang T, Yu W. Org. Lett. 2019; 21: 1559
    • 16b Liang S, Zhao X, Yang T, Yu W. Org. Lett. 2020; 22: 1961
    • 17a Yang T, Fan X, Zhao X, Yu W. Org. Lett. 2018; 20: 1875
    • 17b Yang T, Lin Y, Yang C, Yu W. Green Chem. 2019; 21: 6097
    • 17c Wei K, Yang T, Chen Q, Liang S, Yu W. Chem. Commun. 2020; 56: 11685
  • 18 The result was previously reported as a communication: Wei K, Liang S, Yang T, Yu W. Org. Lett. 2021; 23: 8650
    • 19a King ER, Hennessy ET, Betley TA. J. Am. Chem. Soc. 2011; 133: 4917
    • 19b Hennessy ET, Betley TA. Science 2013; 340: 591
    • 19c Iovan DA, Betley TA. J. Am. Chem. Soc. 2016; 138: 1983
    • 19d Wilding MJ. T, Iovan DA, Betley TA. J. Am. Chem. Soc. 2017; 139: 12043
    • 19e Wilding MJ. T, Iovan DA, Wrobel AT, Lukens JT, MacMillan SN, Lancaster KM, Betley TA. J. Am. Chem. Soc. 2017; 139: 14757
  • 20 Nathan C, Lin Z, Zhang T, Gilhula JC, Abney CW, Lin W. J. Am. Chem. Soc. 2016; 138: 3501
  • 21 Bagh B, Broere DL. J, Sinha V, Kuijpers PF, van Leest NP, de Bruin B, Demeshko S, Siegler MA, van der Vlugt JI. J. Am. Chem. Soc. 2017; 139: 5117
    • 22a Shing K.-P, Liu Y, Cao B, Chang X.-Y, You T, Che C.-M. Angew. Chem. Int. Ed. 2018; 57: 11947
    • 22b Du Y.-D, Xu Z.-J, Zhou C.-Y, Che C.-M. Org. Lett. 2019; 21: 895
  • 23 Liang S, Wei K, Lin Y, Liu T, Wei D, Han B, Yu W. Org. Lett. 2021; 23: 4527
  • 24 Roscales S, Csaky AG. ACS Omega 2019; 4: 13943
  • 25 Hong S, Seo H. US 20120059182, 2012
  • 26 Murata Y, Takeuchi K, Nishikata T. Tetrahedron 2019; 75: 2726