Tierarztl Prax Ausg K Kleintiere Heimtiere 2017; 45(01): 40-45
DOI: 10.15654/TPK-160018
Kasuistik
Schattauer GmbH

Magnetresonanztomographische und klinische Befunde von drei Hunden nach Kohlenmonoxidvergiftung

Eine Fallserie Article in several languages: deutsch | English
Malgorzata Kolecka
1   Klinikum Veterinärmedizin, Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
,
Kerstin von Pückler
1   Klinikum Veterinärmedizin, Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
,
Steven De Decker
2   Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
,
Stefano Cortellini
2   Department of Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
,
Gabriel Wurtinger
1   Klinikum Veterinärmedizin, Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
,
Martin J. Schmidt
1   Klinikum Veterinärmedizin, Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
› Author Affiliations
Further Information

Publication History

Eingegangen: 07 January 2016

Akzeptiert nach Revision: 09 March 2016

Publication Date:
08 January 2018 (online)

Zusammenfassung

Präsentiert werden magnetresonanztomographische Befunde von drei Hunden nach Kohlenmonoxidvergiftung. Im ersten und zweiten Fall umfassten die Befunde Veränderungen im Nucleus caudatus auf beiden Seiten und im ersten Fall auch im Putamen als bilateral symmetrische, diffuse, homogene, in T2 und FLAIR hyperintense, in T1 hypointense Läsionen. Eine Kontrastmittelaufnahme zeigte sich nicht. Beim dritten Hund fanden sich sowohl multiple bilateral symmetrische in T2 und FLAIR hyperintense Läsionen als auch schlecht abgrenzbare Areale in der grauen Substanz im Frontal-, Parietal- und Okzipitallappen. Beide Colliculi caudales, Globus pallidus, Substantia nigra und der mittlere Thalamus stellten sich bilateral symmetrisch hyperintens in T2 und FLAIR dar und nach intravenöser Kontrastmittelapplikation kam es zu einer mittelgradigen Anreicherung.

 
  • Literatur

  • 1 Abelsohn A, Sandborn MD, Jessiman BJ, Weir E. Identifying and managing adverse environmental health effects: 6. Carbon monoxide poisoning. CMAJ 2002; 166: 1685-1690.
  • 2 Coburn R F. Mechanism of carbon monoxide toxicity. Prev Med 1979; 8: 310-322.
  • 3 Falini A, Barkovich AJ, Calabrese G, Origgi D, Triulzi F, Scotti G. Progressive brain failure after diffuse hypoxic ischemic brain injury: a serial MR and proton MR spectroscopic study. Am J Neuroradiol 1998; 19: 648-652.
  • 4 Geraldo AF, Silva C, Neutel D, Neto LL, Albuquerque L. Delayed leukoencephalopathy after acute carbon monoxide intoxication. J Radiol Case Rep 2014; 8: 1-8.
  • 5 Gorman D, Drewry A, Haung YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology 2003; 187: 25-38.
  • 6 Hamcan S, Akgun V, Yilmaz O, Turan A. Isolated cerebellar damage caused by carbon monoxide intoxication. BMJ Case Reports. 2013 doi: DOI: 10.1136/bcr-2013–201647.
  • 7 Kent M, Creevy KE, deLahunta A. Clinical and neuropathological findings of acute carbon monoxide toxicity in chihuahuas following smoke inhalation. J Am Anim Hosp Assoc 2010; 46: 259-264.
  • 8 Kim I-H, Chang K-H, Song IC, Kim KH, Kwon BJ, Kim H-C, Kim JH, Han MH. Delayed encephalopathy of acute carbon monoxide intoxication: diffusivity of cerebral white matter lesions. Am J Neuroradiol 2003; 24: 1592-1597.
  • 9 Lapresle J, Fardeau M. The central nervous system and carbon monoxide poisoning II. Anatomical study of brain lesions following intoxications with carbon monoxide (22 cases). In carbon monoxide poisoning. Prog Brain Res 1967; 24: 31-74.
  • 10 Okeda R, Funata N, Takan O, Miyazaki Y, Higashino F, Yokoyama K, Manabe M. The pathogenesis of carbon monoxide encephalopathy in the acute phase – physiological and morphological correlation. Acta Neuro path 1981; 54: 1-10.
  • 11 Peney DG. Acute carbon monoxide poisoning: animal models – a review. Toxicology 1990; 62: 123-160.
  • 12 Prokop LD, Chichkova R. Carbon monoxide intoxication: An updated review. J Neurol Sci 2007; 262: 122-130.
  • 13 Rodkey FL, O’Neil JD, Collisom H A, Uddin DA. Relative affinity of hemoglobin S and hemoglobin A for carbon monoxide and oxygen. Clin Chem 1974; 20: 83-84.
  • 14 Schmidt MJ, Kramer M. Metabolisch-toxische Enzephalopathien. In: MRT-Atlas ZNS-Befunde bei Hund und Katze. Stuttgart: Enke; 2015: 197-212.
  • 15 Singhal AB, Topcuoglu MA, Koroshetz WJ. Diffusion MRI in three types of anoxic encephalopathy. J Neurol Sci 2002; 196: 37-40.
  • 16 Stephen RA, Donal SW, Siobhain OB, Michael CR, Daniel CJ. Carbon monoxide poisoning: Novel magnetic resonance imaging pattern in the acute setting. J Emerg Med 2012; 5: 30.
  • 17 Teksam M, Casey SO, Michel E, Liu H, Truwit CL. Diffussion-weighted MR imaging findings in carbon monoxide poisoning. Neuroradiol 2002; 4: 109-113.
  • 18 Thom MD, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 1995; 25: 474-480.
  • 19 Varon J, Marik PE, Fromm Jr RE, Gueler A. Carbon monoxide poisoning: a review for clinicians. J Emerg Med 1999; 17: 87-93.