Thromb Haemost 2015; 114(06): 1241-1249
DOI: 10.1160/TH15-01-0051
Endothelium and Angiogenesis
Schattauer GmbH

Endothelial-specific deficiency of Junctional Adhesion Molecule-C promotes vessel normalisation in proliferative retinopathy

Matina Economopoulou*
2   Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Nemanja Avramovic*
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Anne Klotzsche-von Ameln
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Irina Korovina
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
David Sprott
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Maryna Samus
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Bettina Gercken
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Maria Troullinaki
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Sylvia Grossklaus
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Richard H. Funk
3   Department of Anatomy, Medical Faculty, Technische Universität Dresden, Dresden, Germany
,
Xuri Li
4   State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
,
Beat A. Imhof
5   Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
,
Valeria V. Orlova
6   Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
,
Triantafyllos Chavakis
1   Department of Clinical Pathobiochemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
7   Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
› Author Affiliations
Further Information

Publication History

Received: 20 January 2015

Accepted after major revision: 09 July 2015

Publication Date:
30 November 2017 (online)

Summary

In proliferative retinopathies, like proliferative diabetic retinopathy and retinopathy of prematurity (ROP), the hypoxia response is sustained by the failure of the retina to revascularise its ischaemic areas. Non-resolving retina ischaemia/hypoxia results in upregulation of proangiogenic factors and pathologic neovascularisation with ectopic, fragile neovessels. Promoting revascularisation of the retinal avascular area could interfere with this vicious cycle and lead to vessel normalisation. Here, we examined the function of endothelial junctional adhesion molecule-C (JAM-C) in the context of ROP. Endothelial-specific JAM-C-deficient (EC-JAM-C KO) mice and littermate JAM-C-proficient (EC-JAM-C WT) mice were subjected to the ROP model. An increase in total retinal vascularisation was found at p17 owing to endothelial JAM-C deficiency, which was the result of enhanced revascularisation and vessel normalisation, thereby leading to significantly reduced avascular area in EC-JAM-C KO mice. In contrast, pathologic neovessel formation was not affected by endothelial JAM-C deficiency. Consistent with improved vessel normalisation, tip cell formation at the interface between vascular and avascular area was higher in EC-JAM-C KO mice, as compared to their littermate controls. Consistently, JAM-C inactivation in endothelial cells resulted in increased spreading on fibronectin and enhanced sprouting in vitro in a manner dependent on β1-integrin and on the activation of the small GTPase RAP1. Together, endothelial deletion of JAM-C promoted endothelial cell sprouting, and consequently vessel normalisation and revascularisation of the hypoxic retina without altering pathologic neovascularisation. Thus, targeting endothelial JAM-C may provide a novel therapeutic strategy for promoting revascularisation and vessel normalisation in the treatment of proliferative retinopathies.

* These authors contributed equally as first authors to the work.


 
  • References

  • 1 Sapieha P, Hamel D, Shao Z. et al. Proliferative retinopathies: angiogenesis that blinds. Intern J Biochem Cell Biol 2010; 42: 5-12.
  • 2 Hammes HP, Feng Y, Pfister F. et al. Diabetic retinopathy: targeting vasoregression. Diabetes 2011; 60: 9-16.
  • 3 Stitt AW, Lois N, Medina RJ. et al. Advances in our understanding of diabetic retinopathy. Clin Sci 2013; 125: 1-17.
  • 4 Osaadon P, Fagan XJ, Lifshitz T. et al. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye 2014; 28: 510-520.
  • 5 Lee J, Kim KE, Choi DK. et al. Angiopoietin-1 guides directional angiogenesis through integrin alphavbeta5 signaling for recovery of ischaemic retinopathy. Sci Transl Med 2013; 05: 203ra127.
  • 6 Sapieha P. Eyeing central neurons in vascular growth and reparative angiogenesis. Blood 2012; 120: 2182-2194.
  • 7 Chen J, Michan S, Juan AM. et al. Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischaemic retinopathy. Angiogenesis 2013; 16: 985-992.
  • 8 Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tiss Res 2014; 355: 701-715.
  • 9 Orlova VV, Chavakis T. Regulation of vascular endothelial permeability by junctional adhesion molecules (JAM). Thromb Haemost 2007; 98: 327-332.
  • 10 Luissint AC, Nusrat A, Parkos CA. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 2014; 36: 211-226.
  • 11 Ebnet K, Aurrand-Lions M, Kuhn A. et al. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 2003; 116: 3879-3891.
  • 12 Woodfin A, Voisin MB, Beyrau M. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol 2011; 12: 761-769.
  • 13 Chavakis T, Keiper T, Matz-Westphal R. et al. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem 2004; 279: 55602-55608.
  • 14 Economopoulou M, Hammer J, Wang F. et al. Expression, localisation, and function of junctional adhesion molecule-C (JAM-C) in human retinal pigment epithelium. Invest Ophthalmol Visual Sci 2009; 50: 1454-1463.
  • 15 Daniele LL, Adams RH, Durante DE. et al. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol 2007; 505: 166-176.
  • 16 Orlova VV, Economopoulou M, Lupu F. et al. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med 2006; 203: 2703-2714.
  • 17 Li X, Stankovic M, Lee BP. et al. JAM-C induces endothelial cell permeability through its association and regulation of {beta}3 integrins. Arterioscl Thromb Vasc Biol 2009; 29: 1200-1206.
  • 18 Carmona G, Gottig S, Orlandi A. et al. Role of the small GTPase Rap1 for inte-grin activity regulation in endothelial cells and angiogenesis. Blood 2009; 113: 488-497.
  • 19 Abraham S, Yeo M, Montero-Balaguer M. et al. VE-Cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 2009; 19: 668-674.
  • 20 Langer HF, Orlova VV, Xie C. et al. A novel function of junctional adhesion molecule-C in mediating melanoma cell metastasis. Cancer Res 2011; 71: 4096-4105.
  • 21 Imhof BA, Zimmerli C, Gliki G. et al. Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice. J Pathol 2007; 212: 198-208.
  • 22 Gliki G, Ebnet K, Aurrand-Lions M. et al. Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature 2004; 431: 320-324.
  • 23 Wyss L, Schafer J, Liebner S. et al. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus. PloS one 2012; 07: e45619.
  • 24 Motegi S, Leitner WW, Lu M. et al. Pericyte-derived MFG-E8 regulates pathologic angiogenesis. Arterioscl Thromb Vasc Biol 2011; 31: 2024-2034.
  • 25 Economopoulou M, Bdeir K, Cines DB. et al. Inhibition of pathologic retinal neovascularisation by alpha-defensins. Blood 2005; 106: 3831-3838.
  • 26 Langer HF, Chung KJ, Orlova VV. et al. Complement-mediated inhibition of neovascularisation reveals a point of convergence between innate immunity and angiogenesis. Blood 2010; 116: 4395-4403.
  • 27 Smith LE, Wesolowski E, McLellan A. et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Visual Sci 1994; 35: 101-111.
  • 28 Gerhardt H, Golding M, Fruttiger M. et al. VEGF guides angiogenic sprouting utilising endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163-1177.
  • 29 Dietrich N, Hammes HP. Retinal digest preparation: a method to study diabetic retinopathy. Methods Mol Biol 2012; 933: 291-302.
  • 30 Leinster DA, Colom B, Whiteford JR. et al. Endothelial cell junctional adhesion molecule C plays a key role in the development of tumors in a murine model of ovarian cancer. FASEB J 2013; 27: 4244-4253.
  • 31 Chatzigeorgiou A, Chung KJ, Garcia-Martin R. et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 2014; 60: 1196-1210.
  • 32 Choi EY, Chavakis E, Czabanka MA. et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 2008; 322: 1101-1104.
  • 33 Phieler J, Chung KJ, Chatzigeorgiou A. et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol 2013; 191: 4367-4374.
  • 34 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408.
  • 35 Chavakis T, Cines DB, Rhee JS. et al. Regulation of neovascularisation by human neutrophil peptides (alpha-defensins): a link between inflammation and angio-genesis. FASEB J 2004; 18: 1306-1308.
  • 36 Klotzsche-von Ameln A, Prade I, Grosser M. et al. PHD4 stimulates tumor angiogenesis in osteosarcoma cells via TGF-alpha. Mol Cancer Res 2013; 11: 1337-1348.
  • 37 Economopoulou M, Langer HF, Celeste A. et al. Histone H2AX is integral to hypoxia-driven neovascularisation. Nature Med 2009; 15: 553-558.
  • 38 Fukushima Y, Okada M, Kataoka H. et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischaemic retinopathy in mice. J Clin Invest 2011; 121: 1974-1985.
  • 39 Feng Y, vom Hagen F, Pfister F. et al. Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 2007; 97: 99-108.
  • 40 Chrzanowska-Wodnicka M, Kraus AE, Gale D. et al. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 2008; 111: 2647-2656.
  • 41 Giannotta M, Benedetti S, Tedesco FS. et al. Targeting endothelial junctional adhesion molecule-A/ EPAC/ Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Mol Med 2014; 06: 239-258.
  • 42 Raimondi C, Fantin A, Lampropoulou A. et al. Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. J Exp Med 2014; 211: 1167-1183.
  • 43 Siemerink MJ, Klaassen I, Van Noorden CJ. et al. Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy. J Histochem Cytochem 2013; 61: 101-115.