Thromb Haemost 2013; 110(01): 173-183
DOI: 10.1160/TH13-01-0080
Animal Models
Schattauer GmbH

Haemarthrosis stimulates the synovial fibrinolytic system in haemophilic mice

Laurens Nieuwenhuizen
1   Rheumatology & Clinical Immunology, University Medical Center, Utrecht, The Netherlands
2   Haematology & Van Creveldkliniek, University Medical Center, Utrecht, The Netherlands
,
Goris Roosendaal
2   Haematology & Van Creveldkliniek, University Medical Center, Utrecht, The Netherlands
,
Katja Coeleveld
1   Rheumatology & Clinical Immunology, University Medical Center, Utrecht, The Netherlands
,
Erik Lubberts
3   Rheumatology and Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
,
Douwe H. Biesma
2   Haematology & Van Creveldkliniek, University Medical Center, Utrecht, The Netherlands
,
Floris P. J. G. Lafeber
1   Rheumatology & Clinical Immunology, University Medical Center, Utrecht, The Netherlands
,
Roger E. G. Schutgens
2   Haematology & Van Creveldkliniek, University Medical Center, Utrecht, The Netherlands
› Author Affiliations
Financial support: This study was supported by an unrestricted grant from Novo Nordisk.
Further Information

Publication History

Received: 31 January 2013

Accepted after minor revision: 21 April 2013

Publication Date:
30 November 2017 (online)

Summary

Recurrent joint bleeding is the most common manifestation of haemophilia resulting in haemophilic arthropathy (HA). The exact pathophysiology is unknown, but it is suggested that arthropathy is stimulated by liberation of fibrinolytic activators from the synovium during haemarthrosis. The aim of this study was to test the hypothesis that haemarthrosis activates the local synovial fibrinolytic system in a murine haemophilia model. The right knees of haemophilic and control mice were punctured to induce haemarthrosis. The left knees served as internal control joints. Synovial levels of urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), plasmin, and alpha-2-antiplasmin (A2AP) were compared between the punctured and control knees. In haemophilic mice, an increase in synovial cells expressing urokinase-type plasminogen activator (uPA) in the right punctured knee versus the left unaffected knee was observed: (47% vs 43%) (p=0.03). Additionally, in haemophilic mice, haemar-throsis induced an increase in uPA (0.016 ng/ml vs 0.01 ng/ml) (p=0.03) and plasmin (0.53 μg/ml vs 0.46 μg/ml) (p=0.01) as promoters of fibrinolysis. Synovial levels of PAI-1 (0.32 ng/ml vs 0.17 ng/ ml) (p<0.01) was also increased, whereas synovial levels of A2AP were unchanged: (0.021 μg/ml vs 0.021 μg/ml) (p=0.15). Enhanced uPA production was confirmed in human stimulated synovial fibroblast cultures and elevated levels of plasmin were confirmed harmful to human cartilage tissue explants. In this study we demonstrate that haemarthrosis in haemophilic mice induces synovial uPA expression and results in an increase in synovial plasmin levels, making the joint more vulnerable to prolonged and subsequent bleedings, and adding directly to cartilage damage.

 
  • References

  • 1 Lafeber FP, Miossec P, Valentino LA. Physiopathology of haemophilic arthropathy. Haemophilia 2008; 14 (Suppl. 04) 3-9.
  • 2 Mulder K, Llinas A. The target joint Haemophilia. 2004; 10 (Suppl. 04) 152-156.
  • 3 Acharya SS, Kaplan RN, Macdonald D. et al. Neoangiogenesis contributes to the development of haemophilic synovitis. Blood 2011; 117: 2484-2493.
  • 4 Madhok R, Bennett D, Sturrock RD. et al. Mechanisms of joint damage in an experimental model of haemophilic arthritis. Arthritis Rheum 1988; 31: 1148-1155.
  • 5 Jansen NW, Roosendaal G, Bijlsma JW. et al. Exposure of human cartilage tissue to low concentrations of blood for a short period of time leads to prolonged cartilage damage: an in vitro study. Arthritis Rheum 2007; 56: 199-207.
  • 6 Roosendaal G, Vianen ME, Marx JJ. et al. Blood-induced joint damage: a human in vitro study. Arthritis Rheum 1999; 42: 1025-1032.
  • 7 Storti E, Magrini U, Ascari E. Synovial fibrinolysis and haemophilic haemarthrosis. Br Med J 1971; 04: 812.
  • 8 Pandolfi M, Ahlberg A, Traldi A. et al. Fibrinolytic activity of human synovial membranes in health and in haemophilia. Scand J Haematol 1972; 09: 572-576.
  • 9 Busso N, Peclat V, So A. et al. Plasminogen activation in synovial tissues: differences between normal, osteoarthritis, and rheumatoid arthritis joints. Ann Rheum Dis 1997; 56: 550-557.
  • 10 Kummer JA, Abbink JJ, de Boer JP. et al. Analysis of intraarticular fibrinolytic pathways in patients with inflammatory and noninflammatory joint diseases. Arthritis Rheum 1992; 35: 884-893.
  • 11 Mayer P. Notiz über Hämateïn und Hämalaun. Zeitschrift Wissensch Mikroskopie Mikrosk Technik 1903; 20: 409-409.
  • 12 Hakobyan N, Enockson C, Cole AA. et al. Experimental haemophilic arthropathy in a mouse model of a massive haemarthrosis: gross, radiological and histological changes. Haemophilia 2008; 14: 804-809.
  • 13 Holmberg H, Kiersgaard MK, Mikkelsen LF. et al. Impact of blood sampling technique on blood quality and animal welfare in haemophilic mice. Lab Anim 2011; 45: 114-120.
  • 14 Valentino LA, Hakobyan N, Kazarian T. et al. Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency. Haemophilia 2004; 10: 280-287.
  • 15 Lubberts E, Joosten LA, Oppers B. et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol 2001; 167: 1004-1013.
  • 16 Rosengren S, Boyle DL, Firestein GS. Acquisition, culture, and phenotyping of synovial fibroblasts. Methods Mol Med 2007; 135: 365-375.
  • 17 Whiteman P. The quantitative measurement of Alcian Blue-glycosaminoglycan complexes. Biochem J 1973; 131: 343-350.
  • 18 Rodriguez-Merchan EC. Pathogenesis, early diagnosis, and prophylaxis for chronic haemophilic synovitis. Clin Orthop Relat Res 1997; 6-11.
  • 19 Broze Jr GJ, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from haemophilic plasma. Blood 1996; 88: 3815-3823.
  • 20 Foley JH, Nesheim ME. Soluble thrombomodulin partially corrects the premature lysis defect in FVIII-deficient plasma by stimulating the activation of thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2009; 07: 453-459.
  • 21 Mosnier LO, Lisman T, van den Berg HM. et al. The defective down regulation of fibrinolysis in haemophilia A can be restored by increasing the TAFI plasma concentration. Thromb Haemost 2001; 86: 1035-1039.
  • 22 Grigorjeva M, Golubeva M, Jakunina L. et al. The State of Fibrinolytic and Coagulation Systems in Haemophiliacs. J Thromb Haemost 2005; 03 (Suppl): 819.
  • 23 Grunewald M, Siegemund A, Grunewald A. et al. Paradoxical hyperfibrinolysis is associated with a more intensely haemorrhagic phenotype in severe congenital haemophilia. Haemophilia 2002; 08: 768-775.
  • 24 Crippa MP. Urokinase-type plasminogen activator. Int J Biochem Cell Biol 2007; 39: 690-694.
  • 25 Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 2009; 07: 4-13.
  • 26 Ronday HK, Smits HH, Van Muijen GN. et al. Difference in expression of the plasminogen activation system in synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Br J Rheumatol 1996; 35: 416-423.
  • 27 Yoshida E, Ohmura S, Sugiki M. et al. A novel function of extraerythrocytic haemoglobin: identification of globin as a stimulant of plasminogen activator biosynthesis in human fibroblasts. Thromb Haemost 2001; 86: 1521-1527.
  • 28 Kruithof EK. Plasminogen activator inhibitors--a review. Enzyme 1988; 40: 113-121.
  • 29 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992; 267: 11693-11696.
  • 30 Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129: 307-321.
  • 31 Pandey M, Loskutoff DJ, Samad F. Molecular mechanisms of tumor necrosis factor-alpha-mediated plasminogen activator inhibitor-1 expression in adipocytes. FASEB J 2005; 19: 1317-1319.
  • 32 Coughlin PB. Antiplasmin: the forgotten serpin?. FEBS J 2005; 272: 4852-4857.
  • 33 Coughlin PB. Antiplasmin: the forgotten serpin?. FEBS J 2005; 272: 4852-4857.
  • 34 Collen D, Wiman B. Turnover of antiplasmin, the fast-acting plasmin inhibitor of plasma. Blood 1979; 53: 313-324.
  • 35 Dargaud Y, Simpson H, Chevalier Y. et al. The potential role of synovial thrombomodulin in the pathophysiology of joint bleeds in haemophilia. Haemophilia 2012; 18: 818-823.
  • 36 Brinkmann T, Kahnert H, Prohaska W. et al. Synthesis of tissue factor pathway inhibitor in human synovial cells and chondrocytes makes joints the predilected site of bleeding in haemophiliacs. Eur J Clin Chem Clin Biochem 1994; 32: 313-317.
  • 37 So AK, Varisco PA, Kemkes-Matthes B. et al. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 2003; 01: 2510-2515.
  • 38 Belcher C, Fawthrop F, Bunning R. et al. Plasminogen activators and their inhibitors in synovial fluids from normal, osteoarthritis, and rheumatoid arthritis knees. Ann Rheum Dis 1996; 55: 230-236.
  • 39 Alturfan AA, Eralp L, Emekli N. Investigation of inflammatory and haemostatic parameters in female patients undergoing total knee arthroplasty surgery. Inflammation 2008; 31: 414-421.
  • 40 Jin T, Tarkowski A, Carmeliet P. et al. Urokinase, a constitutive component of the inflamed synovial fluid, induces arthritis. Arthritis Res Ther 2003; 05: R9-R17.
  • 41 Li J, Ny A, Leonardsson G. et al. The plasminogen activator/plasmin system is essential for development of the joint inflammatory phase of collagen type II-induced arthritis. Am J Pathol 2005; 166: 783-792.
  • 42 Furmaniak-Kazmierczak E, Cooke TD, Manuel R. et al. Studies of thrombin-induced proteoglycan release in the degradation of human and bovine cartilage. J Clin Invest 1994; 94: 472-480.
  • 43 Carmeliet P, Moons L, Lijnen R. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17: 439-444.
  • 44 Monea S, Lehti K, Keski-Oja J. et al. Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 2002; 192: 160-170.
  • 45 Ramos-DeSimone N, Hahn-Dantona E, Sipley J. et al. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274: 13066-13076.
  • 46 Hvas AM, Sorensen HT, Norengaard L. et al. Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe haemophilia A. J Thromb Haemost 2007; 05: 2408-2414.
  • 47 Rainsford SG, Jouhar AJ, Hall A. Tranexamic acid in the control of spontaneous bleeding in severe haemophilia. Thromb Diath Haemorrh 1973; 30: 272-279.
  • 48 Astermark J, Rocino A, Von Depka M. et al. Current use of by-passing agents in Europe in the management of acute bleeds in patients with haemophilia and inhibitors. Haemophilia 2007; 13: 38-45.