Exp Clin Endocrinol Diabetes 2009; 117(6): 251-256
DOI: 10.1055/s-2008-1080917
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Insulinotropic Effect of Aqueous Extract of Brassica nigra Improves Glucose Homeostasis in Streptozotocin Induced Diabetic Rats

P. Anand 1 , Y. K. Murali 1 , V. Tandon 1 , P. S. Murthy 1 , R. Chandra 1
  • 1Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
Further Information

Publication History

received 31.03.2008 first decision 15.05.2008

accepted 28.05.2008

Publication Date:
25 August 2008 (online)

Abstract

Aqueous extract of Brassica nigra (AEBN) has been shown to have good antidiabetic effect along with significant decrease (p<0.01) of abnormal serum lipid levels in our previous study. To understand the mechanism of action, effect of oral administration of AEBN for two months on glycolytic and gluconeogenic enzymes was studied in liver and kidney tissues of rats with streptozotocin (STZ) induced diabetes mellitus. The activities of gluconeogenic enzymes were higher and of glycolytic enzymes were decreased in both the liver and kidney tissues during diabetes. However, in diabetic rats treated with AEBN for two months, decrease of serum glucose, increase of serum insulin and release of insulin from pancreas (shown in vitro from isolated pancreas) along with the restoration of key regulatory enzyme activities of carbohydrate metabolism and glycogen content were observed. The therapeutic role of AEBN in STZ induced diabetes as exempli- fied in this study can be attributed to the release of insulin from pancreas and change of glucose metabolizing enzyme activities to normal levels, thus stabilizing glucose homeostasis in the liver and kidney. The LD50 was found to be more than 15 times the effective dose (ED) implying higher margin of safety for AEBN. These biochemical effects indicate that AEBN could be a possible new therapeutic agent for the treatment of diabetes.

References

  • 1 Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat.  Mol Cell Biochem. 2004;  261 63-70
  • 2 Anand P, Murali KY, Vibha T, Ramesh C, Murthy PS. Preliminary studies on the antihyperglycemic effect of aqueous extract of Brassica nigra (L.) Koch in streptozotocin induced diabetic rats.  Indian J Exp Biol. 2007;  45 696-701
  • 3 Blair JB, Cimbala MA, Foster JL, Morgan RA. Hepatic pyruvate kinase: Regulation by glucagon, cyclic adenosine 3′-5′ -monophosphate, and insulin in the perfused rat liver.  J Biol Chem. 1976;  251 3756-3762
  • 4 Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.  Biochem J. 1990;  265 503-509
  • 5 Bolkent S, Yamardag R, Tabakogluoguz A, Ozsoy-Sacon O. Effects of chord (Beta vulgaris L. var. cicla) extract on pancreatic β-cells in streptozotocin-diabetic rats: a morphologic and biochemical study.  J Ethnopharmacol. 2000;  73 251-259
  • 6 Bracken P, Singh J, Winlow W, Howarth FC. Mechanism underlying contractile dysfunction in streptozotocin- induced type 1 and type 2 diabetic cardiomyopathy. In: G.M. Pierce, M. Nagano, P. Zaharadka, N.S. Dhalla (eds) Atherosclerosis, hypertension and diabetes. Kluwar, Boston 2003: 387-408
  • 7 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein by dye binding.  Anal Biochem. 1976;  72 248-254
  • 8 Day C. Traditional plant treatments for diabetes mellitus: pharmaceutical foods.  Br J Nutr. 1998;  80 203-208
  • 9 Gipsen WH, Biessels GJ. Cognition, and synaptic plasticity in diabetes mellitus.  Trends Neuroscirnce. 2000;  23 542-549
  • 10 Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential.  J Ethnopharmacol. 2002;  81 81-100
  • 11 Gumma K, MacLean P. The kinetic quantitation of ATP D-glucose-6-phosphotransferase.  FEBS Lett. 1971;  27 293-297
  • 12 Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.  Annu Rev Biochem. 1997;  66 581-611
  • 13 Huang X, Vaag A, Hansson M, Weng J, Laurila E, Groop L. Impaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited.  J Clin Endocrinol Metab. 2000;  85 1584-1590
  • 14 Jomain-Baum M, Schramm VL. Kinetic mechanism of phosphoenolpyruvate carboxykinase (GTP) from rat liver cytosol.  J Biol Chem. 1978;  253 3648-3659
  • 15 Karunanayake EH, Tennekoon KH. Search of novel hypoglycemic agents from medicinal plants. In: A. K. Sharma (ed) Diabetes mellitus and its complications. An update,. Macmillan India Ltd, New Delhi, India 1993
  • 16 Kemp CB, Knight MJ, Scharp DW, Lacy PE, Ballinger WF. Transplantation of isolated pancreatic islets into the portal vein of diabetic rats.  Nature. 1973;  244 447-449
  • 17 Kumar PJ, Clark M. Diabetes mellitus and other disorders of metabolism. In: Textbook of medicine. Saunders, London 2002: 1069-1121
  • 18 Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas.  Diabetes. 1967;  16 35-39
  • 19 Ling KH, Byrne WL, Lardy HA. Phosphoenolpyruvate carboxykinase. In: S.P. Colowick, N.O. Kalpan (eds) Methods in enzymology, vol. 1. Academic Press, New York 1975: 306-310
  • 20 Lorke D. A new approach to practical acute toxicity testing.  Arch Toxicol. 1983;  54 275-287
  • 21 Mankil J, Moonsoo P, Hyun CL, Yoon-Ho K, Eun SK, Sang KK. Antidiabetic agents from medicinal plants.  Curr Med Chem. 2006;  13 1203-1218
  • 22 Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53.  J Biol Chem. 1997;  272 22776-22780
  • 23 Mohammad S, Asia T, Kamal A, Bamezai RNK, Baquer NZ. In vivo effect of Trigonella foenum graecum on the expression of pyruvate kinase, phosphoenolpyruvate carboxykinase, and distribution of glucose transporter (GLUT4) in alloxan-diabetic rats.  Can J Physiol Pharmacol. 2006;  84 647-654
  • 24 Mosseri R, Waner T, Shefi M, Shafrir E, Mayerowictch J. Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vanadate treatment on hepatic glucose -6-phosphate andphosphoenol pyruvate carboxykinase.  Metabolism. 2000;  49 321-325
  • 25 Murali YK, Anand P, Tandon V, Singh R, Chandra R, Murthy PS. Longterm effects of Terminalia chebula Retz on hyperglycemia and associated hyperlipidemia, tissue glycogen content and in vitro release of insulin in streptozotocin induced diabetic rats.  Experimental and Clinical Endocrinology & Diabetes. 2007;  115 641-646
  • 26 Murali YK, Ramesh C, Murthy PS. Antihyperglycemic effect of water extract of dry fruits of Terminalia chebula in experimental diabetes mellitus.  Indian J Clin Biochem. 2004;  19 202-204
  • 27 Murphy ED, Anderson JW. Tissue glycolytic and gluconeogenic enzyme activities in mildly and moderately diabetic rats: influence of tolbutamide administration.  Endocrinology. 1974;  94 27-34
  • 28 Nandan SD, Beale G. Regulation of phosphoenolpyruvate carboxykinase mRNA in mouse liver, kidney, and fat tissues by fasting, diabetes, and insulin.  Lab Anim Sci. 1992;  42 473-477
  • 29 Ouwens DM, Gerard CM, van der Z, Maassen JA. Modulation of insulinstimulated glycogen synthesis by Src homology phosphatase 2.  Molecular and Cellular Endocrinology. 2001;  175 131-140
  • 30 Patel K, Srinivasan K. Plant foods in the management of diabetes mellitus: Vegetables as potential hypoglycemic agents.  Nahrung. 1997;  41 68-74
  • 31 Rahimi R, Nikfar S, Larijini B, Abdollahi M. A role on the role of antioxidants in the management of diabetes and its complications.  Biomed Pharmacother. 2005;  59 365-373
  • 32 Sharma SB, Nasir A, Prabhu KM, Murthy PS. Antihyperglycemic effect of the fruitpulp of Eugenia jambolana in experimental diabetes mellitus.  J Ethnopharmacol. 2006;  104 367-373
  • 33 Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits.  J Ethnopharmacol. 2003;  85 201-206
  • 34 Sochor M, Baquer NZ, Mac Lean P. Glucose over and under utilization in diabetes: comparative studies on the change in activities of enzymes of glucose metabolism in rat kidney and liver.  Mol Physiol. 1985;  7 51-68
  • 35 Stanley Mainzen Prince P, Kamalakkannan N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes.  J Biochem Molecular Toxicology. 2006;  20 96-102
  • 36 Werve G van de, Lange A, Newgard C, Méchin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system.  Eur J Biochem. 2000;  267 1533-1549
  • 37 Vats V, Yadav SP, Grover JK. Effect of T. foenumgraecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism.  J Ethnopharmacol. 2003;  85 237-242
  • 38 Vyvyan B, Norman RL. Insulin release from the perfused rat pancreas. Mode of action of tolbutamide.  Biochem J. 1974;  142 385-389
  • 39 Weber G, Convery HJ, Lea MA, Stamm NB. Feedback inhibition of key glycolytic enzymes in liver: action of free fatty acids.  Science. 1966;  154 1357-1360
  • 40 Zimmet P, Alberti KGMM, Shaw T. Global and societal implication of diabetes epidemic.  Nature. 2001;  414 782-787

Correspondence

Prof. P. S. Murthy
Prof. R. Chandra

Dr. B. R. Ambedkar center for Biomedical Research

University of Delhi

110007 Delhi

India

Phone: 91/11/2766 62 72

Fax: 91/11/2766 62 48

Email: psmurthy_2000@yahoo.com

Email: acbrdu@hotmail.com

    >