Semin Musculoskelet Radiol 2007; 11(3): 215-230
DOI: 10.1055/s-2008-1038311
Published by Thieme Medical Publishers

Genetics for the Diagnosis and Treatment of Mesenchymal Tumors

Jerzy Lasota1 , Julie C. Fanburg-Smith1
  • 1Department of Soft Tissue and Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, D.C.
Further Information

Publication History

Publication Date:
07 February 2008 (online)

ABSTRACT

Cytogenetics and molecular genetics play an important role in the diagnosis of soft tissue and bone mesenchymal tumors. This update focuses on cytogenetic and molecular genetic techniques commonly used for evaluation of mesenchymal tumors, including karyotyping, fluorescent in situ hybridization, and polymerase chain reaction. Examples of different techniques, inherent technical problems, and interpretation of the results are discussed. Additionally, limitations related to the type of material available for genotyping (fresh, frozen, or formalin-fixed paraffin-embedded tissue) are covered. Cytogenetic and molecular genetic alterations identified in various mesenchymal tumors are often valuable for diagnosis, prognosis, and treatment strategies.

REFERENCES

  • 1 Cooper G M. Oncogenes. 2nd ed. Boston; Jones and Bartlett Publishers International 1995
  • 2 Petit M M, Swarts S, Bridge J A et al.. Expression of reciprocal fusion transcripts of the HMGIC and LPP genes in parosteal lipoma.  Cancer Genet Cytogenet. 1998;  106 18-23
  • 3 Rogalla P, Kazimierczak B, Meyer-Bolte K et al.. The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic phenotype.  Genes Chromosomes Cancer. 1998;  22 100-104
  • 4 Petit M M, Mols R, Schoenmakers E F et al.. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family.  Genomics. 1996;  36 118-129
  • 5 Petit M M, Schoenmakers E F, Huysmans C et al.. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes.  Genomics. 1999;  57 438-441
  • 6 Broberg K, Zhang M, Strombeck B et al.. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35-37and 12q13-15.  Int J Oncol. 2002;  21 321-326
  • 7 Kazmierczak B, Dal Cin P, Wanschura S et al.. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors.  Am J Pathol. 1998;  152 431-435
  • 8 Ballaux F, Debiec-Rychter M, De Wever I et al.. Chondroid lipoma is characterized by t(11;16)(q13;p12-13).  Virchows Arch. 2004;  444 208-210
  • 9 Sandberg A A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma.  Cancer Genet Cytogenet. 2004;  150 93-115
  • 10 Meloni A M, Spanier S S, Bush C H et al.. Involvement of 10q22 and 11q13 in hibernoma.  Cancer Genet Cytogenet. 1994;  72 59-64
  • 11 Mertens F, Rydholm A, Brosjö O et al.. Hibernomas are characterized by rearrangements of chromosome bands 11q13-21.  Int J Cancer. 1994;  58 503-505
  • 12 Mrózek K, Karakousis C P, Bloomfield C D. Band 11q13 in nonrandomly rearranged in hibernomas.  Genes Chromosomes Cancer. 1994;  9 145-147
  • 13 Gisselsson D, Höglund M, Mertens F et al.. Hibernomas are characterized by homozygous deletions in the multiple endocrine neoplasia type I region. Metaphase fluorescence in situ hybridization reveals complex rearrangements not detected by conventional cytogenetics.  Am J Pathol. 1999;  155 61-66
  • 14 Maire G, Forus A, Foa C et al.. 11q13 alterations in two cases of hibernoma: large heterozygous deletions and rearrangement breakpoints near GARP in 11q13.5  Genes Chromosomes Cancer. 2003;  37 389-395
  • 15 Turaga K K, Silva-Lopez E, Sanger W G et al.. A (9;11)(q34;q13) translocation in hibernoma.  Cancer Genet Cytogenet. 2006;  170 163-166
  • 16 Astrom A, D'Amore E S, Sainati L et al.. Evidence of involvement of the PLAG1 gene in lipoblastomas.  Int J Oncol. 2000;  16 1107-1110
  • 17 Hibbard M K, Kozakewich H P, Dal Cin P et al.. PLAG1 fusion oncogenes in lipoblastoma.  Cancer Res. 2000;  60 4869-4872
  • 18 Gisselsson D, Hibbard M K, Dal Cin P et al.. PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms.  Am J Pathol. 2001;  159 955-962
  • 19 Sciot R, De Wever I, Debiec-Rychter M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis.  Virchows Arch. 2003;  442 468-471
  • 20 Schoenmakers E F, Huysmans C, van de Ven W J. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas.  Cancer Res. 1999;  59 19-23
  • 21 Moore S D, Herrick S R, Ince T A et al.. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF.  Cancer Res. 2004;  64 5570-5577
  • 22 Kurose K, Mine N, Doi D et al.. Novel gene fusion COX6C at 8q22-23 to HMGIC at 12q15 in a uterine leiomyoma.  Genes Chromosomes Cancer. 2000;  27 303-307
  • 23 Mine N, Kurose K, Konishi H et al.. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma.  Jpn J Cancer Res. 2001;  92 135-139
  • 24 Kazmierczak B, Hennig Y, Wanschura S et al.. Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene.  Cancer Res. 1995;  55 6038-6039
  • 25 Kazmierczak B, Pohnke Y, Bullerdiek J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations.  Genomics. 1996;  38 223-226
  • 26 Nucci M R, Weremowicz S, Neskey D M et al.. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva.  Genes Chromosomes Cancer. 2001;  32 172-176
  • 27 Micci F, Panagopoulos I, Bjerkehagen B et al.. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15).  Virchows Arch. 2006;  448 838-842
  • 28 Rabban J T, Dal Cin P, Oliva E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma.  J Gynecol Pathol. 2006;  25 403-407
  • 29 Tallini G, Dorfman H, Brys P et al.. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group.  J Pathol. 2002;  196 194-203
  • 30 Dahlen A, Mertens F, Rydholm A et al.. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas.  Mod Pathol. 2003;  16 1132-1140
  • 31 Rogalla P, Lemke I, Kazmierczak B et al.. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15).  Genes Chromosomes Cancer. 2000;  29 363-366
  • 32 Blank C, Schoenmakers E F, Rogalla P et al.. Intragenic breakpoint within RAD51L1 in a t(6;14)(p21.3;q24) of a pulmonary chondroid hamartoma.  Cytogenet Cell Genet. 2001;  95 17-19
  • 33 Lemke I, Rogalla P, Bullerdiek J. A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas and pulmonary chondroid hamartomas.  Cytogenet Cell Genet. 2001;  95 153-156
  • 34 Lemke I, Rogalla P, Grundmann F et al.. Expression of the HMGA2-LPP fusion transcript in only 1 of 61 karyotypically normal pulmonary chondroid hamartomas.  Cancer Genet Cytogenet. 2002;  138 160-164
  • 35 Von Ahsen I, Rogalla P, Bullerdiek J. Expression patterns of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas with t(13;12)(q27 approximately 28;q14 approximately 15).  Cancer Genet Cytogenet. 2005;  163 68-70
  • 36 Halbert A R, Harrison W R, Hicks M J et al.. Cytogenetic analysis of a scapular chondromyxoid fibroma.  Cancer Genet Cytogenet. 1998;  104 52-56
  • 37 Granter S R, Renshaw A A, Kozakewich H P et al.. The pericentromeric inversion, inv (6)(p25q13), is a novel diagnostic marker in chondromyxoid fibroma.  Mod Pathol. 1998;  11 1071-1074
  • 38 Safar A, Nelson M, Neff J R et al.. Recurrent anomalies of 6q25 in chondromyxoid fibroma.  Hum Pathol. 2000;  31 306-311
  • 39 Smith C A, Magenis R E, Himoe E et al.. Chondromyxoid fibroma of the nasal cavity with an interstitial insertion between chromosomes 6 and 19.  Cancer Genet Cytogenet. 2006;  171 97-100
  • 40 Baruffi M R, Volpon J B, Neto J B et al.. Osteoid osteomas with chromosome alterations involving 22q.  Cancer Genet Cytogenet. 2001;  124 127-131
  • 41 Nilsson M, Domanski H A, Mertens F et al.. Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre parosteal osteochondromatous proliferation (Nora's lesion).  Hum Pathol. 2004;  35 1063-1069
  • 42 Endo M, Hasegawa T, Tashiro T et al.. Bizarre parosteal osteochondromatous proliferation with a t(1;17) translocation.  Virchows Arch. 2005;  447 99-102
  • 43 Storlazzi C T, Wozniak A, Panagopoulos I et al.. Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic delineation of the tumor-specific translocation t(X;6)(q13-14,q22).  Int J Cancer. 2006;  118 1972-1976
  • 44 Oliveira A M, Perez-Atayde A R, Inwards C Y et al.. USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts.  Am J Pathol. 2004;  165 1773-1780
  • 45 Oliveira A M, His B L, Weremowicz S et al.. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst.  Cancer Res. 2004;  64 1920-1923
  • 46 Oliveira A M, Perez-Atayde A R, Dal Cin P et al.. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes.  Oncogene. 2005;  24 3419-3426
  • 47 West R B, Rubin B P, Miller M A et al.. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells.  Proc Natl Acad Sci U S A. 2006;  103 690-695
  • 48 Cupp J S, Miller M A, Montgomery K D et al.. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and reactive synovitides.  Am J Surg Pathol. 2007;  31 970-976
  • 49 Möller E, Mandahl N, Mertens F et al.. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors.  Genes Chromosomes Cancer. 2008;  47(1) 21-25 , Epub
  • 50 Waters B L, Panagopoulos I, Allen E F. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11.  Cancer Genet Cytogenet. 2000;  121 109-116
  • 51 Raddaoui E, Donner L R, Panagopoulos I et al.. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma.  Diagn Mol Pathol. 2002;  11 157-162
  • 52 Antonescu C R, Dal Cin P, Nafa K et al.. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma.  Genes Chromosomes Cancer. 2007;  46 1051-1060
  • 53 Hallor K H, Micci F, Meis-Kindblom J M et al.. Fusion genes in angiomatoid fibrous histiocytoma.  Cancer Lett. 2007;  251 158-163
  • 54 Pedeutour F, Simon M P, Minoletti F et al.. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences.  Cancer Res. 1995;  55 2400-2403
  • 55 Pedeutour F, Simon M P, Minoletti F et al.. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement.  Cytogenet Cell Genet. 1996;  72 171-174
  • 56 Kiuru-Kuhlefelt S, El-Rifai W, Fanburg-Smith J et al.. Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans.  Cytogenet Cell Genet. 2001;  92 192-195
  • 57 Simon M P, Pedeutour F, Sirvent N et al.. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma.  Nat Genet. 1997;  15 95-98
  • 58 Shimizu A, O'Brien K P, Sjoblom T et al.. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB.  Cancer Res. 1999;  59 3719-3723
  • 59 Simon M P, Navarro M, Roux D et al.. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP).  Oncogene. 2001;  20 2965-2975
  • 60 O'Brien K P, Seroussi E, Dal Cin P et al.. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas protuberans and giant cell fibroblastomas.  Genes Chromosomes Cancer. 1998;  23 187-193
  • 61 Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment.  Genes Chromosomes Cancer. 2003;  37 1-19
  • 62 Sandberg A A, Bridge J A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: dermatofibrosarcoma protuberans and giant cell fibroblastoma.  Cancer Genet Cytogenet. 2003;  140 1-12
  • 63 Nakanishi G, Lin S N, Asagoe K et al.. A novel fusion gene of collagen type I alpha 1 (exon 31) and platelet-derived growth factor B-chain (exon 2) in dermatofibrosarcoma protuberans.  Eur J Dermatol. 2007;  17 217-219
  • 64 Storlazzi C T, Mertens F, Nascimento A et al.. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma.  Hum Mol Genet. 2003;  12 2349-2358
  • 65 Reid R, de Silva M V, Paterson L et al.. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11).  Am J Surg Pathol. 2003;  27 1229-1236
  • 66 Panagopoulos I, Storlazzi C T, Fletcher C D et al.. The chimeric FUS/CREB312 gene is specific for low-grade fibromyxoid sarcoma.  Genes Chromosomes Cancer. 2004;  40 218-228
  • 67 Mertens F, Fletcher C D, Antonescu C R et al.. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene.  Lab Invest. 2005;  85 408-415
  • 68 Guillou L, Benhattar J, Gengler C et al.. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group.  Am J Surg Pathol. 2007;  31 1387-1402
  • 69 Knezevich S R, McFadden D E, Tao W et al.. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma.  Nat Genet. 1998;  18 184-187
  • 70 Knezevich S R, Garnett M J, Pysher T J et al.. ETV6-NTRK3 gene fusion and trisomy 11 established a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma.  Cancer Res. 1998;  58 5046-5048
  • 71 Rubin B P, Chen C J, Morgan T W et al.. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma.  Am J Pathol. 1998;  153 1451-1458
  • 72 Lawrence B, Perez-Atayde A, Hibbard M K et al.. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors.  Am J Pathol. 2000;  157 377-384
  • 73 Bridge J A, Kanamori M, Ma Z et al.. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor.  Am J Pathol. 2001;  159 411-415
  • 74 Ma Z, Hill D A, Collins M H et al.. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor.  Genes Chromosomes Cancer. 2003;  37 98-105
  • 75 Cools J, Wlodarska I, Somers R et al.. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor.  Genes Chromosomes Cancer. 2002;  34 354-362
  • 76 Debelenko L V, Arthur D C, Pack S D et al.. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor.  Lab Invest. 2003;  83 1255-1265
  • 77 Debiec-Rychter M, Marynen P, Hagenmeijer A et al.. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor.  Genes Chromosomes Cancer. 2003;  38 187-190
  • 78 Panagopoulos I, Nilsson T, Domanski H A et al.. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor.  Int J Cancer. 2006;  118 1181-1186
  • 79 Mendlick M R, Nelson M, Pickering D et al.. Translocation t(1;3)(p36.3q25) is a nonrandom aberration in epithelioid hemangioendothelioma.  Am J Surg Pathol. 2001;  25 684-687
  • 80 He M, Das K, Blacksin M et al.. A translocation involving the placental growth factor gene is identified in an hemangioendothelioma.  Cancer Genet Cytogenet. 2006;  168 150-154
  • 81 Koontz J I, Soreng A L, Nucci M et al.. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors.  Proc Natl Acad Sci U S A. 2001;  98 6348-6353
  • 82 Micci F, Panagopoulos I, Bjerkehagen B et al.. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas.  Cancer Res. 2006;  66 107-112
  • 83 Henn W, Wullich B, Thonnes M et al.. Recurrent t(12;19)(q13;q13.3) in intracranial and extracranial hemangiopericytoma.  Cancer Genet Cytogenet. 1993;  71 151-154
  • 84 Clark J, Benjamin H, Gill S et al.. Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily, in a human myxoid chondrosarcoma.  Oncogene. 1996;  12 229-235
  • 85 Labelle Y, Zucman J, Stenman G et al.. Oncogenic conversion of the novel orphan nuclear receptor by chromosome translocation.  Hum Mol Genet. 1995;  4 2219-2226
  • 86 Attwooll C, Tariq M, Harris M et al.. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma.  Oncogene. 1999;  18 7599-7601
  • 87 Sjögren H, Meis-Kindblom J, Kindblom L G et al.. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma.  Cancer Res. 1999;  59 5064-5067
  • 88 Sjögren H, Wedell B, Kindblom J M et al.. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21).  Cancer Res. 2000;  60 6832-6835
  • 89 Panagopoulos I, Mencinger M, Dietrich C U et al.. Fusion of the RBP56 and CHN genes in extraskeletal myxoid chondrosarcomas with translocation t(9;17)(q22;q11).  Oncogene. 1999;  18 7594-7598
  • 90 Aurias A, Rimbout C, Buffe D et al.. Translocation involving chromosome 22 in Ewing's sarcoma: a cytogenetic study of four fresh tumors.  Cancer Genet Cytogenet. 1984;  12 21-25
  • 91 Turc-Carel C, Philip I, Berger M-P et al.. Chromosomal translocations 11;22 in cell lines of Ewing's sarcoma.  C R Seances Acad Sci III. 1983;  296 1101-1103
  • 92 Whang-Peng J, Triche T J, Knutsen T et al.. Chromosome translocation in peripheral neuroepithelioma.  N Engl J Med. 1984;  311 584-585
  • 93 Whang-Peng J, Triche T J, Knutsen T et al.. Cytogenetic characterization of selected small round cell tumors of childhood.  Cancer Genet Cytogenet. 1986;  21 185-208
  • 94 Delattre O, Zucman J, Plougastel B et al.. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors.  Nature. 1992;  359 162-165
  • 95 Zucman J, Delattre O, Desmaze C et al.. Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints.  Genes Chromosomes Cancer. 1992;  5 271-277
  • 96 Zucman J, Melot T, Desmaze C et al.. Combinatorial generation of variable fusion proteins in Ewing family of tumors.  EMBO J. 1993;  12 4481-4487
  • 97 Sorensen P H, Lessnick S L, Lopez-Terrada D et al.. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG.  Nat Genet. 1994;  6 146-151
  • 98 Jeon I S, Davis J N, Braun B S et al.. A variant Ewing's sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1.  Oncogene. 1995;  10 1229-1234
  • 99 Kaneko Y, Yoshida K, Handa M et al.. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy.  Genes Chromosomes Cancer. 1996;  15 115-121
  • 100 Peter M, Couturier J, Pacquement H et al.. A new member of the ETS family fused to EWS in Ewing tumors.  Oncogene. 1997;  14 1159-1164
  • 101 Mastrangelo T, Modena P, Tornielli S et al.. A novel zinc finger gene is fused to EWS in small round cell tumor.  Oncogene. 2000;  19 3799-3804
  • 102 Wang L, Bhargava R, Zheng T et al.. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions.  J Mol Diagn. 2007;  9 498-509
  • 103 Ng T L, O'Sullivan M J, Pallen C J et al.. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV.  J Mol Diagn. 2007;  9 459-463
  • 104 Shing D C, McMullan D J, Roberts P et al.. FUS/ERG gene fusions in Ewing's tumors.  Cancer Res. 2003;  63 4568-4576
  • 105 Douglass E C, Rowe S T, Valentine M et al.. A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral neuroectodermal tumor.  Cytogenet Cell Genet. 1990;  53 87-90
  • 106 Ladanyi M, Gerald W L. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor.  Cancer Res. 1994;  54 2837-2840
  • 107 Gerald W L, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor.  Proc Natl Acad Sci U S A. 1995;  14 1028-1032
  • 108 Gerald W L, Ladanyi M, de Alava E et al.. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants.  J Clin Oncol. 1998;  16 3028-3036
  • 109 Wolf A N, Ladanyi M, Paull G et al.. The expending clinical spectrum of desmoplastic small round-cell tumor: a report of two cases with molecular confirmation.  Hum Pathol. 1999;  30 430-435
  • 110 Nishio J, Iwasaki H, Ishiguro M et al.. Intra-abdominal small round cell tumour with EWS-WT1 fusion transcript in an elderly patient.  Histopathology. 2003;  42 410-412
  • 111 Benjamin L E, Fredericks W J, Barr F G et al.. Fusion of the EWS1 and WT1 genes as a result of the t(11;22)(p13;q12) translocation in desmoplastic small round cell tumors.  Med Pediatr Oncol. 1996;  27 434-439
  • 112 Tison V, Cerasoli S, Morigi F et al.. Intracranial desmoplastic small-cell tumor: report of a case.  Am J Surg Pathol. 1996;  20 112-117
  • 113 Barr F G, Galili N, Holick J et al.. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma.  Nat Genet. 1993;  3 113-117
  • 114 Galili N, Davis R J, Fredericks W J et al.. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.  Nat Genet. 1993;  5 230-235
  • 115 Davis R J, D'Cruz C M, Lovell M A et al.. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma.  Cancer Res. 1994;  54 2869-2872
  • 116 Barr F G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma.  Oncogene. 2001;  20 5736-5746
  • 117 Crew A J, Clark J, Fisher C et al.. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma.  EMBO J. 1995;  14 2333-2340
  • 118 Fligman I, Lonardo F, Jhanwar S C et al.. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript.  Am J Pathol. 1995;  147 1592-1599
  • 119 Skytting B, Nilsson G, Brodin B et al.. A novel fusion gene, SYT-SSX4, in synovial sarcoma.  J Natl Cancer Inst. 1999;  91 974-975
  • 120 Mancuso T, Mezzelani A, Riva C et al.. Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma.  Lab Invest. 2000;  80 805-813
  • 121 Panagopoulos I, Höglund M, Mertens F et al.. Fusion of EWS and CHOP genes in myxoid liposarcoma.  Oncogene. 1996;  12 489-494
  • 122 Crozat A, Åman P, Mandahl N et al.. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma.  Nature. 1993;  363 640-644
  • 123 Rabbitts T H, Forster A, Larson R et al.. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma.  Nat Genet. 1993;  4 175-180
  • 124 Dal-Cin P, Sciot R, Panagopoulos I et al.. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features.  J Pathol. 1997;  182 437-441
  • 125 Joyama S, Ueda T, Shimizu K et al.. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case reported and review of the literature.  Cancer. 1999;  86 1246-1250
  • 126 Ladanyi M, Lui M Y, Antonescu C R et al.. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25.  Oncogene. 2001;  20 48-57
  • 127 Zucman J, Delattre O, Desmaze C et al.. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts.  Nat Genet. 1993;  4 341-345
  • 128 Panagopoulos I, Mertens F, Debiec-Rychter M et al.. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses.  Int J Cancer. 2002;  99 560-567
  • 129 Speleman F, Delattre O, Peter M et al.. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation.  Mod Pathol. 1997;  10 496-499
  • 130 Antonescu C R, Tschernyavsky S J, Woodruff J M et al.. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases.  J Mol Diagn. 2002;  4 44-52
  • 131 Covinsky M, Gong S, Rajaram V et al.. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma.  Hum Pathol. 2005;  36 74-81
  • 132 Antonescu C R, Nafa K, Segal N H et al.. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma-association with gastrointestinal location and absence of melanocytic differentiation.  Clin Cancer Res. 2006;  12 5356-5362
  • 133 Heim S, Mietelman F. Cancer Cytogenetics. Chromosomal and Molecular Genetic Aberrations of Tumor Cells. New York; Wiley-Liss 1995
  • 134 Lasota J. Genetics of soft tissue tumors. In: Miettinen M Diagnostic Soft Tissue Pathology. Philadelphia; Churchill Livingstone 2003: 99-142
  • 135 Pfeifer J D. Molecular Genetic Testing In Surgical Pathology. Philadelphia; Lippincott Williams & Wilkins 2006
  • 136 Kohl N E, Kanda N, Schreck R R et al.. Transposition and amplification of oncogene-related sequences in human neuroblastomas.  Cell. 1983;  35 359-367
  • 137 Schwab M, Varmus H E, Bishop J M et al.. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc.  Nature. 1984;  308 288-291
  • 138 Brodeur G M, Seeger R C, Schwab M et al.. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage.  Science. 1984;  224 1121-1124
  • 139 Seeger R C, Brodeur G M, Sather H et al.. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas.  N Engl J Med. 1985;  313 1111-1116
  • 140 Brodeur G M, Azar C, Brother M et al.. Neuroblastoma: effect of genetic factors on prognosis and treatment.  Cancer. 1992;  70 1685-1694
  • 141 Wolf M, Aaltonen L A, Szymanska J et al.. Complexity of 12q13-22 amplicon in liposarcoma: microsatellite repeat analysis.  Genes Chromosomes Cancer. 1997;  18 66-70
  • 142 Berner J M, Forus A, Elkahloun A et al.. Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas.  Genes Chromosomes Cancer. 1996;  17 254-259
  • 143 Elkahloun A G, Bittner M, Hoskins K et al.. Molecular cytogenetic characterization and physical mapping of 12q13-15 amplification in human cancer.  Genes Chromosomes Cancer. 1996;  17 205-214
  • 144 Reifenberger G, Ichimura K, Reinferberger G et al.. Refined mapping of 12q13-15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets.  Cancer Res. 1996;  56 5141-5145
  • 145 Fakharzadeh S S, Trusko S P, George D L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line.  EMBO J. 1991;  10 1565-1569
  • 146 Kussie P H, Gorina S, Marechal V et al.. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.  Science. 1996;  274 948-953
  • 147 Buschmann T, Fuchs S Y, Lee C G et al.. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.  Cell. 2000;  101 753-762
  • 148 Xiao Z X, Chen J, Levine A J et al.. Interaction between the retinoblastoma protein and the oncoprotein MDM2.  Nature. 1995;  375 694-698
  • 149 Kanoe H, Nakayama T, Murakami H et al.. Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation.  Anticancer Res. 1998;  18 2317-2321
  • 150 Nakayama T, Toguchida J, Wadayama B et al.. MDM2 gene amplification in bone and soft tissue tumors: association with tumor progression in differentiated adipose tissue tumors.  Int J Cancer. 1995;  64 342-346
  • 151 Pedeutour F, Forus A, Coindre J M et al.. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors.  Genes Chromosomes Cancer. 1999;  24 30-41
  • 152 Suijkerbuijk R F, Olde Weghuis D E, Van den Berg M et al.. Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well differentiated liposarcomas.  Genes Chromosomes Cancer. 1994;  9 292-295
  • 153 Szymanska J, Virolainen M, Tarkkanen M et al.. Overrepresentation of 1q21-23 and 12q13-21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study.  Cancer Genet Cytogenet. 1997;  99 14-18
  • 154 Pilotti S, Della Torre G, Lavarino C et al.. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implication for different pathogenetic mechanisms.  J Pathol. 1997;  181 14-24
  • 155 Miettinen M Gastrointestinal stromal tumors. Semin Diagn Pathol 2006 23: 61-129
  • 156 Cohen Jr M M, Howell R E. Etiology of fibrous dysplasia and McCune-Albright syndrome.  Int J Oral Maxillofac Surg. 1999;  28 366-371
  • 157 Knudson A G. Mutation and cancer: statistical study of retinoblastoma.  Proc Natl Acad Sci U S A. 1971;  68 820-823
  • 158 Kinzler K W, Nilbert M C, Su L-K et al.. Identification of FAP locus genes from chromosome 5q21.  Science. 1991;  253 661-665
  • 159 Nishisho I, Nakamura Y, Miyoshi Y et al.. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.  Science. 1991;  253 665-669
  • 160 Groden J, Thliveris A, Samowitz W et al.. Identification and characterization of the familial adenomatous polyposis coli gene.  Cell. 1991;  66 589-600
  • 161 Joslyn G, Carlson M, Thliveris A et al.. Identification of deletion mutation and three new genes at the familial polyposis locus.  Cell. 1991;  66 601-613
  • 162 Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives.  Biochim Biophys Acta. 1998;  1378 F115-F177
  • 163 Orlow I, Drobnjak M, Zhang Z F et al.. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival.  J Natl Cancer Inst. 1999;  91 73-79
  • 164 Hussussian C J, Struewing J P, Goldstein A M et al.. Germline p16 mutations in familial melanoma.  Nat Genet. 1994;  8 15-21
  • 165 Greene M H. The genetics of hereditary melanoma and nevi. 1998 update.  Cancer. 1999;  86 2464-2477
  • 166 Knudson A G. Mutation and cancer: statistical study of retinoblastoma.  Proc Natl Acad Sci U S A. 1971;  68 820-823
  • 167 Horowitz J M, Yandell D W, Park S-H et al.. Point mutational inactivation of the retinoblastoma antioncogene.  Science. 1989;  243 937-940
  • 168 Lohmann D R. RB1 gene mutations in retinoblastoma.  Hum Mutat. 1999;  14 283-288
  • 169 Cohen J A, Geradts J. Loss of RB and MTS1/CDKN2 (p16) expression in human sarcomas.  Hum Pathol. 1997;  28 893-898
  • 170 Orkin S H, Goldman D S, Sallan S E. Development of homozygosity for chromosome 11p markers in Wilms' tumour.  Nature. 1984;  309 172-174
  • 171 Weissman B E, Saxon P J, Pasquale S R et al.. Introduction of normal human chromosome into Wilms' tumor cell line controls its tumorigenic expression.  Science. 1987;  236 175-180
  • 172 Kumar-Singh S, Segers K, Rodeck U et al.. WT1 mutations in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition, and prognosis.  J Pathol. 1997;  181 67-74
  • 173 Barbaux S, Niaudet P, Gubler M C et al.. Donor splice-site mutations in WT1 are responsible for Frasier syndrome.  Nat Genet. 1997;  17 467-470
  • 174 Pelletier J, Bruening W, Kashtan C E et al.. Germinal mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome.  Cell. 1991;  67 437-447
  • 175 Malkin D, Li F P, Strong L C et al.. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.  Science. 1990;  250 1233-1238
  • 176 Varley J M, Evans D GR, Birch J M. Li-Fraumeni syndrome-a molecular and clinical review.  Br J Cancer. 1997;  76 1-14
  • 177 Rasmussen S A, Friedman J M. NF1 gene and neurofibromatosis 1.  Am J Epidemiol. 2000;  151 33-40
  • 178 Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP.  Cell. 2001;  104 593-604
  • 179 Colman S D, Williams C A, Wallace R W. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene.  Nat Genet. 1995;  11 90-92
  • 180 Lothe R A, Slettan A, Saeter G et al.. Alterations at chromosome 17 loci in peripheral nerve sheath tumors.  J Neuropathol Exp Neurol. 1995;  54 65-73
  • 181 Gutmann D H. Molecular insights into neurofibromatosis 2.  Neurobiol Dis. 1997;  3 247-261
  • 182 Merel P, Hoang-Xuan K, Sanson M et al.. Screening for germ-line mutations in the NF2 gene.  Genes Chromosomes Cancer. 1995;  12 117-127
  • 183 Bianchi A B, Mitsunaga S I, Cheng J Q et al.. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas.  Proc Natl Acad Sci U S A. 1995;  92 10854-10858
  • 184 Bijlsma E K, Merel P, Bosch D A et al.. Analysis of mutations in the SCH gene in schwannomas.  Genes Chromosomes Cancer. 1994;  11 7-14
  • 185 Lasota J, Fetsch J F, Wozniak A et al.. The neurofibromatosis type 2 gene is mutated in perineural cell tumors. A molecular genetic study of eight cases.  Am J Pathol. 2001;  158 1223-1229
  • 186 Biegel J A, Rorke L B, Packer R J et al.. Monosomy 22 in rhabdoid or atypical tumors of the brain.  J Neurosurg. 1990;  73 710-714
  • 187 Biegel J A, Burk C D, Parmiter A H et al.. Molecular analysis of partial deletion of 22q in a central nervous system rhabdoid tumor.  Genes Chromosomes Cancer. 1992;  5 104-108
  • 188 Biegel J A, Allen C S, Kawasaki K et al.. Narrowing the critical region for the rhabdoid tumor locus in 22q11.  Genes Chromosomes Cancer. 1996;  16 94-105
  • 189 Versteege I, Sevenet N, Lange J et al.. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.  Nature. 1998;  394 203-206
  • 190 Fletcher CD, Unni KK, Mertens F Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon; IARC Press 2002
  • 191 Cremer T, Lichter P, Borden J et al.. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes.  Hum Genet. 1988;  80 235-246
  • 192 Pinkel D, Straume T, Gray J W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization.  Proc Natl Acad Sci U S A. 1986;  83(9) 2934-2938
  • 193 Cohen N, Betts D R, Trakhtenbrot L et al.. Detection of unidentified chromosome abnormalities in human neuroblastoma by spectral karyotyping (SKY).  Genes Chromosomes Cancer. 2001;  31 201-208
  • 194 Mrozek K, Iliszko M, Rys J et al.. Spectral karyotyping reveals 17;22 fusions in a cytogenetically atypical dermatofibrosarcoma protuberans with a large marker chromosome as a sole abnormality.  Genes Chromosomes Cancer. 2001;  31 182-186
  • 195 Mullis K B, Faloona F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.  Methods Enzymol. 1987;  155 335-350
  • 196 Erlich H A. PCR Technology. Principles and Applications for DNA Amplification. New York; Stockton Press 1989
  • 197 McPherson MJ, Quirke P, Taylor GR PCR. A Practical Approach. New York; Oxford University Press 1992
  • 198 Downing J R, Khandekar A, Shurtleff S A et al.. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma.  Am J Pathol. 1995;  146 626-634
  • 199 Lasota J, Miettinen M. Absence of Kaposi's sarcoma-associated virus (human herpesvirus-8) sequences in angiosarcoma.  Virchows Arch. 1999;  434 51-56
  • 200 Livak K J, Flood S J, Marmaro J et al.. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization.  PCR Methods Appl. 1995;  4 357-362
  • 201 Peter M, Gilbert E, Delattre O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors.  Lab Invest. 2001;  81 905-912
  • 202 Bijwaard K E, Fetsch J F, Przygodzki R et al.. Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real time reverse transcriptase-polymerase chain reaction.  J Mol Diagn. 2002;  4 59-64
  • 203 Joensuu H, Roberts P J, Sarlomo-Rikala M et al.. Effect of tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor.  N Engl J Med. 2001;  344 1052-1056
  • 204 Demetri G D. Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571).  Eur J Cancer. 2002;  38 S52-S59
  • 205 Van Glabbeke M, Verweij J, Casali P G et al.. Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European Organization for Research and Treatment of Cancer-Italian Sarcoma Group-Australasian Gastrointestinal Trials Group study.  J Clin Oncol. 2005;  23 5795-5804
  • 206 Heinrich M C, Corless C L, Demetri G D et al.. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor.  J Clin Oncol. 2003;  21 4342-4349
  • 207 Debiec-Rychter M, Sciot R, Le Cesne A et al.. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumors.  Eur J Cancer. 2006;  42 1093-1103
  • 208 Antonescu C R, Besmer P, Guo T et al.. Acquired resistance to imatinib in gastrointestinal stromal tumors occurs through secondary gene mutation.  Clin Cancer Res. 2005;  11 4182-4190
  • 209 Chen L L, Trent J C, Wu E F et al.. A missense mutation in KIT domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors.  Cancer Res. 2004;  64 5913-5919
  • 210 Debiec-Rychter M, Cools J, Dumez H et al.. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants.  Gastroenterology. 2005;  128 270-279
  • 211 Tamborini E, Bonadiman L, Greco A et al.. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient.  Gastroenterology. 2004;  127 294-299
  • 212 McLean S R, Gana-Weisz M, Hartzoulakis B et al.. Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala.  Mol Cancer Ther. 2005;  4 2008-2015
  • 213 Heinrich M C, Corless C L, Blanke C D et al.. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors.  J Clin Oncol. 2006;  24 4764-4774
  • 214 Faivre S, Delbaldo C, Vera K et al.. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer.  J Clin Oncol. 2006;  24 25-35
  • 215 Joensuu H. Second line therapies for the treatment of gastrointestinal stromal tumor.  Curr Opin Oncol. 2007;  19 353-358
  • 216 Maki R G. Recent advances in therapy for gastrointestinal stromal tumors.  Curr Oncol Rep. 2007;  9 165-169
  • 217 Heinrich M C, Corless C L, Liegl B et al.. Mechanisms of sunitinib malate (SU) resistance in gastrointestinal stromal tumors (GISTs). J Clin Oncol 2007 2007 ASCO Annual Meeting Proceedings Part I. 25 No.18S 10006

Jerzy LasotaM.D. 

Department of Soft Tissue and Orthopedic Pathology, Armed Forces Institute of Pathology

6825 16th St., N.W., Bldg. 54, Washington, DC 20306-6000

Email: lasota@afip.osd.mil