Semin Reprod Med 2007; 25(4): 225-234
DOI: 10.1055/s-2007-980216
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Growth Factors in Ovarian Development

Stephanie A. Pangas1
  • 1Department of Pathology, Baylor College of Medicine, Houston, Texas
Further Information

Publication History

Publication Date:
26 June 2007 (online)

ABSTRACT

Folliculogenesis in the adult ovary proceeds from quiescent primordial follicles through several developmental stages that culminate in the release of oocytes for fertilization and terminal differentiation of follicles into corpora lutea. Multiple developmental pathways control growth of oocytes and differentiation of somatic cells of the follicle. Growth factors of the transforming growth factor beta family play prominent roles during follicle development. Recent studies have begun to examine the role of additional developmentally important growth factor families, such as the Hedgehog, Wnt, and Notch families. This review summarizes recent developments on these signaling pathways in the adult mammalian ovary.

REFERENCES

  • 1 Eggan K, Jurga S, Gosden R, Min I M, Wagers A J. Ovulated oocytes in adult mice derive from non-circulating germ cells.  Nature. 2006;  441(7097) 1109-1114
  • 2 Kumar T R, Matzuk M M. Gene knockout models to study the hypothalamus-pituitary-gonadal axis. In: Shupnik MA Gene Engineering and Molecular Models in Endocrinology. Totowa, NJ; Humana Press 2000
  • 3 Kumar T R, Palapattu G, Wang P et al.. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis.  Mol Endocrinol. 1999;  13 851-865
  • 4 Matzuk M M, Kumar T R, Vassalli A et al.. Functional analysis of activins in mammalian development.  Nature. 1995;  374 354-356
  • 5 Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results.  Hum Reprod. 1986;  1 81-87
  • 6 Gougeon A. Ovarian follicular growth in humans: ovarian aging and populations of growing follicles.  Endocr Rev. 1996;  17(2) 121-155
  • 7 Hirshfield A N. Development of follicles in the mammalian ovary.  Int Rev Cytol. 1991;  124 43-101
  • 8 Eppig J J. Oocyte control of ovarian follicular development and function in mammals.  Reproduction. 2001;  122(6) 829-838
  • 9 Matzuk M M, Burns K, Viveiros M M, Eppig J. Intercellular communication in the mammalian ovary: oocytes carry the conversation.  Science. 2002;  296 2178-2180
  • 10 Parrott J A, Skinner M K. Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and kit ligand during ovarian follicular development.  Endocrinology. 1998;  139(5) 2240-2245
  • 11 Matzuk M M, Lamb D J. Genetic dissection of mammalian fertility pathways.  Nat Cell Biol. 2002;  8(suppl 1) S41-S49
  • 12 Rajkovic A, Pangas S A, Matzuk M M. Follicular development: mouse, sheep and human models. In: Neill JD Physiology of Reproduction. 3rd ed. Volume 1. New York; Elsevier 2006: 383-423
  • 13 Pangas S A, Saudye H, Shea L D, Woodruff T K. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes.  Tissue Eng. 2003;  9(5) 1013-1021
  • 14 Hubner K, Fuhrmann G, Christenson L K et al.. Derivation of oocytes from mouse embryonic stem cells.  Science. 2003;  300(5623) 1251-1256
  • 15 Dyce P W, Wen L, Li J. In vitro germline potential of stem cells derived from fetal porcine skin.  Nat Cell Biol. 2006;  8(4) 384-390
  • 16 Ghiglieri C, Khatchadourian C, Tabone E, Hendrick J C, Benahmed M, Menezo Y. Immunolocalization of transforming growth factor-beta 1 and transforming growth factor-beta 2 in the mouse ovary during gonadotrophin-induced follicular maturation.  Hum Reprod. 1995;  10(8) 2115-2119
  • 17 Erickson G F, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle.  Reprod Biol Endocrinol. 2003;  1(1) 9-28
  • 18 Pangas S A, Rademaker A W, Fishman D A, Woodruff T K. Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary.  J Clin Endocrinol Metab. 2002;  87(6) 2644-2657
  • 19 Drummond A E, Le M T, Ethier J F, Dyson M, Findlay J K. Expression and localization of activin receptors, Smads, and beta glycan to the postnatal rat ovary.  Endocrinology. 2002;  143(4) 1423-1433
  • 20 Pangas S A, Matzuk M M. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development.  Mol Cell Endocrinol. 2004;  225(1-2) 83-91
  • 21 Chen Y G, Hata A, Lo R S et al.. Determinants of specificity in TGF-beta signal transduction.  Genes Dev. 1998;  12(14) 2144-2152
  • 22 Dong J, Albertini D F, Nishimori K, Kumar T R, Lu N, Matzuk M M. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383 531-535
  • 23 Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene.  Am J Hum Genet. 2004;  75(1) 106-111
  • 24 Galloway S M, McNatty K P, Cambridge L M et al.. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.  Nat Genet. 2000;  25(3) 279-283
  • 25 Juengel J L, Hudson N L, Heath D A et al.. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep.  Biol Reprod. 2002;  67(6) 1777-1789
  • 26 Wilson T, Wu X Y, Juengel J L et al.. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.  Biol Reprod. 2001;  64(4) 1225-1235
  • 27 Elvin J A, Yan C, Wang P, Nishimori K, Matzuk M M. Molecular characterization of the follicle defects in the growth differentiation factor-9-deficient ovary.  Mol Endocrinol. 1999;  13 1018-1034
  • 28 Rajkovic A, Pangas S A, Ballow D, Suzumori N, Matzuk M M. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.  Science. 2004;  305(5687) 1157-1159
  • 29 Dube J L, Wang P, Elvin J, Lyons K M, Celeste A J, Matzuk M M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes.  Mol Endocrinol. 1998;  12 1809-1817
  • 30 Mazerbourg S, Klein C, Roh J et al.. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5.  Mol Endocrinol. 2004;  18(3) 653-665
  • 31 Moore R K, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells.  J Biol Chem. 2003;  278(1) 304-310
  • 32 Liao W X, Moore R K, Otsuka F, Shimasaki S. Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep.  J Biol Chem. 2003;  278(6) 3713-3719
  • 33 Carabatsos M J, Elvin J A, Matzuk M M, Albertini D F. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice.  Dev Biol. 1998;  204 373-384
  • 34 Yan C, Wang P, DeMayo J et al.. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.  Mol Endocrinol. 2001;  15(6) 854-866
  • 35 McNatty K P, Lawrence S, Groome N P et al.. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.  Reprod Fertil Dev. 2006;  18(4) 403-412
  • 36 McNatty K P, Smith P, Moore L G et al.. Oocyte-expressed genes affecting ovulation rate.  Mol Cell Endocrinol. 2005;  234(1-2) 57-66
  • 37 Di Pasquale E, Rossetti R, Marozzi A et al.. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure.  J Clin Endocrinol Metab. 2006;  91(5) 1976-1979
  • 38 Dixit H, Rao L K, Padmalatha V V et al.. Missense mutations in the BMP15 gene are associated with ovarian failure.  Hum Genet. 2006;  119(4) 408-415
  • 39 Dixit H, Rao L K, Padmalatha V et al.. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure.  Menopause. 2005;  12(6) 749-754
  • 40 Knight P G, Glister C. TGF-beta superfamily members and ovarian follicle development.  Reproduction. 2006;  132(2) 191-206
  • 41 Chang H, Brown C W, Matzuk M M. Genetic analysis of the mammalian TGF-β superfamily.  Endocr Rev. 2002;  23 787-823
  • 42 World Health Organization .Reproductive Health Strategy. Geneva; World Health Organization 2004
  • 43 Centers for Disease Control and Prevention .Assisted reproductive technology success rates: national summary and fertility clinic reports. Atlanta, GA; Centers for Disease Control and Prevention 2000
  • 44 Kobayashi A, Behringer R R. Developmental genetics of the female reproductive tract in mammals.  Nat Rev Genet. 2003;  4(12) 969-980
  • 45 Visser J A, de Jong F H, Laven J S, Themmen A P. Anti-Mullerian hormone: a new marker for ovarian function.  Reproduction. 2006;  131(1) 1-9
  • 46 Behringer R R. The in vivo roles of mullerian-inhibiting substance.  Curr Top Dev Biol. 1994;  29 171-187
  • 47 Durlinger A L, Kramer P, Karels B et al.. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary.  Endocrinology. 1999;  140(12) 5789-5796
  • 48 Durlinger A L, Gruijters M J, Kramer P et al.. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary.  Endocrinology. 2002;  143(3) 1076-1084
  • 49 van Rooij I A, Broekmans F J, te Velde E R et al.. Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve.  Hum Reprod. 2002;  17(12) 3065-3071
  • 50 de Vet A, Laven J S, de Jong F H, Themmen A P, Fauser B C. Antimullerian hormone serum levels: a putative marker for ovarian aging.  Fertil Steril. 2002;  77(2) 357-362
  • 51 Fanchin R, Schonauer L M, Righini C, Guibourdenche J, Frydman R, Taieb J. Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3.  Hum Reprod. 2003;  18(2) 323-327
  • 52 Kevenaar M E, Meerasahib M F, Kramer P et al.. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice.  Endocrinology. 2006;  147(7) 3228-3234
  • 53 Bath L E, Wallace W H, Shaw M P, Fitzpatrick C, Anderson R A. Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B and ovarian ultrasound.  Hum Reprod. 2003;  18(11) 2368-2374
  • 54 Anderson R A, Themmen A P, Al-Qahtani A, Groome N P, Cameron D A. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer.  Hum Reprod. 2006;  21(10) 2583-2592
  • 55 Laven J S, Mulders A G, Visser J A, Themmen A P, De Jong F H, Fauser B C. Anti-Mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age.  J Clin Endocrinol Metab. 2004;  89(1) 318-323
  • 56 Cook C L, Siow Y, Brenner A G, Fallat M E. Relationship between serum mullerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women.  Fertil Steril. 2002;  77(1) 141-146
  • 57 Pigny P, Jonard S, Robert Y, Dewailly D. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome.  J Clin Endocrinol Metab. 2006;  91(3) 941-945
  • 58 Pellatt L, Hanna L, Brincat M et al.. Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries.  J Clin Endocrinol Metab. 2006;  , In press
  • 59 Wozney J M. The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult.  Eur J Oral Sci. 1998;  106(suppl 1) 160-166
  • 60 Shimasaki S, Moore R K, Otsuka F, Erickson G F. The bone morphogenetic protein system in mammalian reproduction.  Endocr Rev. 2004;  25(1) 72-101
  • 61 Chen D, Zhao M, Mundy G R. Bone morphogenetic proteins.  Growth Factors. 2004;  22(4) 233-241
  • 62 Shimasaki S, Zachow R J, Li D et al.. A functional bone morphogenetic protein system in the ovary.  Proc Natl Acad Sci USA. 1999;  96 7282-7287
  • 63 Nilsson E E, Skinner M K. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.  Biol Reprod. 2003;  69(4) 1265-1272
  • 64 Juengel J L, Reader K L, Bibby A H et al.. The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat.  Reproduction. 2006;  131(3) 501-513
  • 65 Glister C, Richards S L, Knight P G. Bone morphogenetic proteins (BMP) - 4, - 6, and - 7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signaling?.  Endocrinology. 2005;  146(4) 1883-1892
  • 66 Glister C, Kemp C F, Knight P G. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.  Reproduction. 2004;  127(2) 239-254
  • 67 Yi S E, LaPolt P S, Yoon B S, Chen J Y, Lu J K, Lyons K M. The type I BMP receptor BmprIB is essential for female reproductive function.  Proc Natl Acad Sci USA. 2001;  98(14) 7994-7999
  • 68 McDowell N, Gurdon J B. Activin as a morphogen in Xenopus mesoderm induction.  Semin Cell Dev Biol. 1999;  10(3) 311-317
  • 69 Gurdon J B, Bourillot P Y. Morphogen gradient interpretation.  Nature. 2001;  413(6858) 797-803
  • 70 Podos S D, Ferguson E L. Morphogen gradients: new insights from DPP.  Trends Genet. 1999;  15(10) 396-402
  • 71 Jones C M, Smith J C. Establishment of a BMP-4 morphogen gradient by long-range inhibition.  Dev Biol. 1998;  194(1) 12-17
  • 72 Pangas S A, Jorgez C J, Matzuk M M. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist, gremlin.  J Biol Chem. 2004;  279(31) 32281-32286
  • 73 Sudo S, Avsian-Kretchmer O, Wang L S, Hsueh A J. Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation.  J Biol Chem. 2004;  279(22) 23134-23141
  • 74 Otsuka F, Moore R K, Iemura S, Ueno N, Shimasaki S. Follistatin inhibits the function of the oocyte-derived factor BMP-15.  Biochem Biophys Res Commun. 2001;  289(5) 961-966
  • 75 Pierre A, Pisselet C, Monget P, Monniaux D, Fabre S. Testing the antagonistic effect of follistatin on BMP family members in ovine granulosa cells.  Reprod Nutr Dev. 2005;  45(4) 419-425
  • 76 Millet C, Lemaire P, Orsetti B, Guglielmi P, Francois V. The human chordin gene encodes several differentially expressed spliced variants with distinct BMP opposing activities.  Mech Dev. 2001;  106(1-2) 85-96
  • 77 Khokha M K, Hsu D, Brunet L J, Dionne M S, Harland R M. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning.  Nat Genet. 2003;  34(3) 303-307
  • 78 McMahon J A, Takada S, Zimmerman L B, Fan C M, Harland R M, McMahon A P. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite.  Genes Dev. 1998;  12(10) 1438-1452
  • 79 Bachiller D, Klingensmith J, Kemp C et al.. The organizer factors Chordin and Noggin are required for mouse forebrain development.  Nature. 2000;  403(6770) 658-661
  • 80 Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila.  Nature. 1980;  287(5785) 795-801
  • 81 Bitgood M J, Shen L, McMahon A P. Sertoli cell signaling by Desert hedgehog regulates the male germline.  Curr Biol. 1996;  6(3) 298-304
  • 82 Wijgerde M, Ooms M, Hoogerbrugge J W, Grootegoed J A. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells.  Endocrinology. 2005;  146(8) 3558-3566
  • 83 Gordon M D, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.  J Biol Chem. 2006;  281(32) 22429-22433
  • 84 Uusitalo M, Heikkila M, Vainio S. Molecular genetic studies of Wnt signaling in the mouse.  Exp Cell Res. 1999;  253(2) 336-348
  • 85 Vainio S, Heikkila M, Kispert A, Chin N, McMahon A P. Female development in mammals is regulated by Wnt-4 signalling.  Nature. 1999;  397 405-409
  • 86 Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs.  Endocrinology. 2002;  143(7) 2741-2749
  • 87 Hsieh M, Johnson M A, Greenberg N M, Richards J S. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary.  Endocrinology. 2002;  143(3) 898-908
  • 88 Hsieh M, Boerboom D, Shimada M et al.. Mice null for Frizzled4 (Fzd4 - / - ) are infertile and exhibit impaired corpora lutea formation and function.  Biol Reprod. 2005;  73(6) 1135-1146
  • 89 Giles R H, van Es J H, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer.  Biochim Biophys Acta. 2003;  1653(1) 1-24
  • 90 Boerboom D, Paquet M, Hsieh M et al.. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development.  Cancer Res. 2005;  65(20) 9206-9215
  • 91 Boerboom D, White L D, Dalle S, Courty J, Richards J S. Dominant-stable beta-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model.  Cancer Res. 2006;  66(4) 1964-1973
  • 92 Artavanis-Tsakonas S, Rand M D, Lake R J. Notch signaling: cell fate control and signal integration in development.  Science. 1999;  284(5415) 770-776
  • 93 Ehebauer M, Hayward P, Arias A M. Notch, a universal arbiter of cell fate decisions.  Science. 2006;  314(5804) 1414-1415
  • 94 Swiatek P J, Lindsell C E, del Amo F F, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice.  Genes Dev. 1994;  8(6) 707-719
  • 95 Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J R, Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality.  Development. 1999;  126(15) 3415-3424
  • 96 Xue Y, Gao X, Lindsell C E et al.. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1.  Hum Mol Genet. 1999;  8(5) 723-730
  • 97 Jiang R, Lan Y, Chapman H D et al.. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice.  Genes Dev. 1998;  12(7) 1046-1057
  • 98 Krebs L T, Xue Y, Norton C R et al.. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation.  Genesis. 2003;  37(3) 139-143
  • 99 Krebs L T, Xue Y, Norton C R et al.. Notch signaling is essential for vascular morphogenesis in mice.  Genes Dev. 2000;  14(11) 1343-1352
  • 100 Vorontchikhina M A, Zimmermann R C, Shawber C J, Tang H, Kitajewski J. Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation.  Gene Expr Patterns. 2005;  5(5) 701-709
  • 101 Johnson J, Espinoza T, McGaughey R W, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles.  Mech Dev. 2001;  109(2) 355-361
  • 102 Hahn K L, Johnson J, Beres B J, Howard S, Wilson-Rawls J. Lunatic fringe null female mice are infertile due to defects in meiotic maturation.  Development. 2005;  132(4) 817-828
  • 103 Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice.  Nature. 1998;  394(6691) 374-377
  • 104 Evrard Y A, Lun Y, Aulehla A, Gan L, Johnson R L. lunatic fringe is an essential mediator of somite segmentation and patterning.  Nature. 1998;  394(6691) 377-381
  • 105 Xu J, Norton C R, Gridley T. Not all lunatic fringe null female mice are infertile.  Development. 2006;  133(4) 579-580
  • 106 Matzuk M M, Finegold M, Su J, Hsueh A, Bradley A. Alpha-inhibin is a tumor-suppressor gene with gonadal specificity in mice.  Nature. 1992;  360 313-319
  • 107 Pieretti-Vanmarcke R, Donahoe P K, Szotek P et al.. Recombinant human Mullerian inhibiting substance inhibits long-term growth of MIS type II receptor-directed transgenic mouse ovarian cancers in vivo.  Clin Cancer Res. 2006;  12(5) 1593-1598
  • 108 Niswander L, Jeffrey S, Martin G R, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb.  Nature. 1994;  371(6498) 609-612
  • 109 Kluppel M, Wrana J L. Turning it up a Notch: cross-talk between TGF beta and Notch signaling.  Bioessays. 2005;  27(2) 115-118

Stephanie A PangasPh.D. 

Department of Pathology, Baylor College of Medicine

One Baylor Plaza S230, Houston, TX 77030

Email: spangas@bcm.edu

    >