Int J Sports Med 2008; 29(1): 34-39
DOI: 10.1055/s-2007-964890
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Predictors of Oxygen Uptake and Performance During Tennis

K. Cooke1 , P. Davey2
  • 1Sports Medicine and Sports Science Division, Singapore Sports Council, Singapore
  • 2Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
Further Information

Publication History

accepted after revision August 17, 2006

Publication Date:
05 July 2007 (online)

Abstract

Tennis ball machine tests permit the concurrent measurement of physiological function and groundstroke performance in a sport specific manner. The purpose of this study was to understand further the demands of groundstroke performance during a test with progressively increasing ball frequency, by determining the running speed between strokes, upper and lower limb acceleration and pulmonary gas exchange throughout. Sixteen tennis players (n = 8, male; n = 8, female; all right handed) completed three 4 min stages of hitting against a ball feed frequency of 15, 20, 25 ball · min-1 interspersed by 8 min of rest. Stepwise multiple regression analysis identified a predictive model of V·O2 containing the variables of left arm acceleration and right ankle acceleration but not running speed (p < 0.0001; adjusted r2 = 0.93; left wrist acceleration Beta = 1.04; right ankle acceleration Beta = - 0.12; S. E. E. = 2.61 ml · kg-1 · min-1). Regression analysis found that the strongest predictors of stroke performance (ball speed [m · s-1] × stroke accuracy [%]) were right wrist acceleration and stroke economy (p < 0.0001; adjusted r2 = 0.28; right wrist acceleration Beta = - 0.59; movement economy Beta = - 0.28). The findings of this study highlight the contribution of limb acceleration and not running speed to the oxygen cost of tennis groundstroke performance.

References

  • 1 Ballesteros M LF, Buchtal F, Rosenfalk P. The pattern of muscular activity during the arm swing of natural walking.  Acta Physiol Scand. 1965;  63 296-310
  • 2 Borg G V. Perceived exertion: a note on history and methods.  Med Sci Sports Exerc. 1973;  5 90-93
  • 3 Burke E R, Ekblom B. Influence of fluid ingestion and dehydration on precision and endurance performance in tennis.  Athletic Trainer. 1982;  17 275-277
  • 4 Calancie B, Lutton S, Broton J G. Central nervous system plasticity after spinal cord injury in man: Interlimb reflexes and the influence of cutaneous stimulation.  Electroencephalogr Clin Neurophysiol. 1996;  101 304-315
  • 5 Cavagna G A, Kaneko M. Mechanical work and efficiency in level walking and running.  J Physiol Lond. 1977;  268 467-481
  • 6 Chen K Y, Bassett Jr D R. The technology of accelerometry-based activity monitors: Current and future.  Med Sci Sports Exerc. 2005;  37 (Suppl) S490-S500
  • 7 Cooke K, Davey P R. Tennis ball diameter: the effect on performance and the concurrent physiological responses.  J Sports Sci. 2005;  23 31-39
  • 8 Cooke K, Davey P R. The physiological cost of velocity coupling during tennis groundstrokes.  J Sports Sci. DOI: 10.1080/02640410600875184
  • 9 Davey P R, Thorpe R, Williams C. Fatigue decreases skilled tennis performance.  J Sports Sci. 2002;  20 311-318
  • 10 Dawson B, Elliott B, Pyke F, Rogers R. Physiological and performance responses to playing tennis in a cool environment and similar intervalized treadmill running in a hot climate.  J Hum Mov Stud. 1985;  11 21-34
  • 11 Dietz V, Fouad K, Bastiaanse C M. Neuronal coordination of arm and leg movements during human locomotion.  Euro J Neurosci. 2001;  14 1906-1914
  • 12 Ferrauti A, Pluim B, Weber K. The effect of recovery duration on running speed and stroke quality during intermittent training drills in elite tennis players.  J Sports Sci. 2001;  19 235-242
  • 13 Haake S J, Chadwick S G, Dignall R J, Goodwill S, Rose P. Engineering tennis - slowing the game down.  Sports Eng. 2000;  3 131-143
  • 14 Hill A V, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen.  Q J Med. 1923;  16 135-171
  • 15 Hoff J, Helgerud J, Wisloff U. Maximal strength training improves work economy in trained females cross country skiers.  Med Sci Sports Exerc. 1999;  31 870-877
  • 16 Loveless D J, Weber C L, Haseler L J, Schneider D A. Maximal leg-strength training improves cycling economy in previously untrained men.  Med Sci Sports Exerc. 2005;  37 1231-1236
  • 17 Saunders P U, Pyne D B, Telford R D, Hawley J A. Reliability and variability of running economy in elite distance runners.  Med Sci Sports Exerc. 2004;  36 1972-1976
  • 18 Smekal G, Pokan R, von Duvillard S P, Baron R, Tschan H, Bachl N. Comparison of laboratory and “on-court” endurance testing in tennis.  Int J Sports Med. 2000;  21 242-249
  • 19 Shimojo N, Keiichi N, Nakajima C. Test-strip method for measuring lactate in whole blood.  Clin Chem. 1989;  35 1992-1994
  • 20 Tsurumi K, Itani T, Tachi N, Takanishi T, Suzumura H, Takeyama H. Estimation of energy expenditure during sedentary work with upper limb movement.  J Occup Health. 2002;  44 408-413
  • 21 Urhausen A, Kullmer T, Schillo C, Kinderman W. Performance diagnostics in tennis.  Dtsch Z Sportmed. 1988;  39 340-346
  • 22 Vergauwen L, Spaepen A J, Lefevre J, Hespel P. Evaluation of stroke performance in tennis.  Occup Health Ind Med. 1998;  39 238-239
  • 23 Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis.  Med Sci Sports Exerc. 1998;  30 1289-1295

PhD Karl Cooke

Sports Medicine and Sports Science Division
Singapore Sports Council

15 Stadium Road

National Stadium

Singapore 397718

Phone: + 65 63 40 96 05

Fax: + 65 63 45 27 95

Email: karl_cooke@hotmail.com

    >