Am J Perinatol 2006; 23(4): 241-246
DOI: 10.1055/s-2006-939535
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Prenatal Diagnosis of Conotruncal Malformations: Diagnostic Accuracy, Outcome, Chromosomal Abnormalities, and Extracardiac Anomalies

Shanthi Sivanandam1 , Julie S. Glickstein1 , Beth F. Printz1 , Lindsey D. Allan1 , Karen Altmann1 , David E. Solowiejczyk1 , Lynn Simpson2 , Annette Perez-Delboy2 , Charles S. Kleinman1
  • 1Division of Pediatric Cardiology, New York-Presbyterian Hospital, Columbia University College of Physicians and Surgeons, Weill Medical College of Cornell University, New York, New York
  • 2Division of Obstetrics and Gynecology, New York-Presbyterian Hospital, Columbia University College of Physicians and Surgeons, Weill Medical College of Cornell University, New York, New York
Further Information

Publication History

Publication Date:
19 April 2006 (online)

ABSTRACT

The purpose of this study was to determine whether continuing experience in prenatal diagnosis of conotruncal malformations (CTMs) has resulted in improved diagnostic accuracy and outcome. Previous reports have demonstrated particular difficulty with ascertainment of the spatial relationship of the great arteries in patients with CTM. The prognosis for fetuses with CTM was poor. Medical records of 113 consecutive fetuses in whom a CTM (tetralogy of Fallot [TOF], double-outlet right ventricle [DORV], type B aortic arch interruption, transposition of the great arteries [TGA], and persistent truncus arteriosus [TA]) was diagnosed antenatally between 1994 and 2003 were reviewed. The diagnosis of the 91 fetuses with CTM included TOF (n = 32), TGA (n = 29), DORV (n = 22), and TA (n = 8). The great arterial spatial relationship was diagnosed accurately in 84 of the 91 (92%) live-born infants. In the other seven infants with DORV, the great arterial spatial relationship was identified inaccurately. The overall survival to 30 days was 85 of 91 (93%). Twenty-three of 91 (25%) patients had extracardiac anomalies. Genetic diagnosis (amniocentesis) was obtained in 63 of 94 patients; 11 (17%) had chromosomal abnormalities. Maternal glucose tolerance results were obtained in 65 of the 91 patients and were abnormal in 25 of 65 (38%). Prenatal diagnostic accuracy of conotruncal malformations is excellent; the arterial spatial relationship of DORV remains problematic. The populations of fetuses with CTMs who continue to develop to term have an excellent prognosis.

REFERENCES

  • 1 Tometzki A J, Suda K, Kohl T, Kovalchin J P, Silverman N H. Accuracy of prenatal echocardiographic diagnosis and prognosis of fetuses with conotruncal anomalies.  J Am Coll Cardiol. 1999;  33 1696-1701
  • 2 Paladini D, Rustico M, Todros T et al.. Conotruncal anomalies in prenatal life.  Ultrasound Obstet Gynecol. 1996;  8 241-246
  • 3 Bonnet D, Coltri A, Butera G et al.. Prenatal diagnosis of transposition of great vessels reduces neonatal morbidity and mortality.  Arch Mal Coeur Vaiss. 1999;  92 637-640
  • 4 Mielke G, Steil H, Kendziorra H, Goelz R. Ductus arteriosus-dependent pulmonary circulation secondary to cardiac malformations in fetal life.  Ultrasound Obstet Gynecol. 1997;  9 25-29
  • 5 Ferencz C, Rubin J D, McCarter R J, Clark E B. Maternal diabetes and cardiovascular malformations: predominance of double outlet right ventricle and truncus arteriosus.  Teratology. 1990;  41 319-326
  • 6 Iserin L, de Lonlay P, Viot G et al.. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies.  Eur J Pediatr. 1998;  157 881-884
  • 7 Goldmuntz E, Clark B J, Mitchell L E et al.. Frequency of 22q11 deletions in patients with conotruncal defects.  J Am Coll Cardiol. 1998;  32 492-498
  • 8 Driscoll D A, Salvin J, Sellinger B et al.. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis.  J Med Genet. 1993;  30 813-817
  • 9 Hook E B. Contribution of chromosome abnormalities to human morbidity and mortality.  Cytogenet Cell Genet. 1982;  33 101-106
  • 10 Paladini D, Calabro R, Palmieri S, D'Andrea T. Prenatal diagnosis of congenital heart disease and fetal karyotyping.  Obstet Gynecol. 1993;  81 679-682
  • 11 Copel J A, Cullen M, Green J J, Mahoney M J, Hobbins J C, Kleinman C S. The frequency of aneuploidy in prenatally diagnosed congenital heart disease: an indication for fetal karyotyping.  Am J Obstet Gynecol. 1988;  158 409-413
  • 12 Schwanitz G, Zerres K, Gembruch U, Bald R, Gamerdinger F, Hansmann M. Prenatal detection of heart defects as an indication for chromosome analysis.  Ann Genet. 1990;  33 79-83
  • 13 Wladimiroff J W, Stewart P A, Sachs E S, Niermeijer M F. Prenatal diagnosis and management of congenital heart defect: significance of associated fetal anomalies and prenatal chromosome studies.  Am J Med Genet. 1985;  21 285-290
  • 14 Lurie I W, Kappetein A P, Loffredo C A, Ferencz C. Non-cardiac malformations in individuals with outflow tract defects of the heart.  Am J Med Genet. 1995;  59 76-84
  • 15 Miller E, Hare J W, Clotherty J P et al.. Elevated maternal hemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers.  N Engl J Med. 1981;  304 1331-1334
  • 16 Rowland T W, Hubbell J P, Nadas A S. Congenital heart disease in infants of diabetic mothers.  J Pediatr. 1973;  83 815-820
  • 17 Meyer-Wittkopf M, Simpson J M, Sharland G K. Incidence of congenital heart defects in fetuses of diabetic mothers: a retrospective study of 326 cases.  Ultrasound Obstet Gynecol. 1996;  8 8-10

Shanthi SivanandamM.D. 

Pediatric Cardiology, University of Minnesota

420 Delaware Street SE, MMC 94, Minneapolis, MN 55455

    >