Plant Biol (Stuttg) 2006; 8(4): 515-521
DOI: 10.1055/s-2006-923964
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Stomatal Conductance is a Key Parameter to Assess Limitations to Photosynthesis and Growth Potential in Barley Genotypes

Q. Jiang1 , D. Roche1 , T. A. Monaco2 , D. Hole1
  • 1Plants, Soils, and Biometeorology, Utah State University, Logan, UT 84322-4820, USA
  • 2Forage and Range Research Lab, USDA‐ARS, Logan, UT 84322-6300, USA
Further Information

Publication History

Received: December 5, 2005

Accepted: January 12, 2006

Publication Date:
11 May 2006 (online)

Abstract

Fourteen genotypes of barley were compared for response to salinity by monitoring the parameters gas exchange and chlorophyll fluorescence. We present relationships between stomatal conductance (g s) gas exchange chlorophyll fluorescence parameters and aboveground dry matter (AGDM). We found that genetic variability provided a continuum of data for g s across control and saline conditions. We used this continuum of gs values to test the overall relationships between g s and net photosynthesis (A), leaf internal CO2 concentration (C i), actual quantum yield of PSII electron transport (ΦPSII), relative electron yield over net CO2 assimilation rate (ETR/A), and AGDM. The relationship between g s and A was highly significant (p < 0.0001) for both control and saline treatments, while correlations between g s and C i, and C i and A were significant only under control conditions. Unexpectedly, we found positive correlations between g s and ΦPSII (p < 0.0001) for both conditions. A comparison between relationships of g s and A, and g s and ΦPSII seemed to indicate a possible acclimation to salinity at the chloroplastic level. Finally, the relationships between g s and ETR/A were exceptionally strong for both growing conditions (p < 0.0001) indicating that, as gs values were negatively affected in barley by genetics and salinity as main or interactive effects, there was a progressive increase in photorespiration in barley. Overall, we found that stomatal conductance was a key parameter in the study of barley responses to limiting situations for photosynthesis. We also found a strong relationship between AGDM and g s regardless of growing conditions and genotypes. For breeding evaluations to select barley genotypes for salinity tolerance, it may be possible to replace all measurements of gas exchange and chlorophyll fluorescence by the simple use of a porometer.

References

  • 1 Antolin M. C., Sanchez-Diaz M.. Effects of temporary droughts on photosynthesis of alfalfa plants.  Journal of Experimental Botany. (1993);  44 1341-1349
  • 2 Bota J., Flexas J., Medrano H.. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars.  Annals of Applied Biology. (2001);  138 353-361
  • 3 Brugnoli E., Lauteri M.. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes.  Plant Physiology. (1991);  95 628-635
  • 4 Condon A. G., Richards R. A., Rebetzke G. J., Farquhar G. D.. Improving intrinsic water-use efficiency and crop yield.  Crop Science. (2002);  42 122-131
  • 5 Cornic G., Massacci A.. Leaf photosynthesis under drought stress. Baker, N. R., ed. Photosynthesis and the Environment. Dordrecht; Kluwer Academic Publishers (1996): 347-366
  • 6 Cornic G., Fresneau C.. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for Photosystem II activity during a mild drought.  Annals of Botany. (2002);  89 887-894
  • 7 Delfine S., Alvino A., Zacchini M., Loreto F.. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves.  Australian Journal of Plant Physiology. (1998);  25 395-402
  • 8 Dowton W. J. S., Loveys B. R., Grant W. J. R.. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis.  The New Phytologist. (1988);  110 503-509
  • 9 Escalona J. M., Flexas J., Medrano H.. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines.  Australian Journal of Plant Physiology. (1999);  26 421-433
  • 10 Farquhar G. D., Sharkey T. D.. Stomatal conductance and photosynthesis.  Annual Review of Plant Physiology. (1982);  33 317-345
  • 11 Flexas J., Bota J., Escalona J. M., Sampol B., Medrano H.. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations.  Functional Plant Biology. (2002);  29 461-471
  • 12 Flexas J., Medrano H.. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited.  Annals of Botany. (2002);  89 183-189
  • 13 Flexas J., Bota J., Loreto F., Cornic G., Sharkey T. D.. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants.  Plant Biology. (2004);  6 269-279
  • 14 Geber M. A., Dawson T. E.. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum.  Oecologia. (1997);  109 535-546
  • 15 Genty B., Briantais J. M., Baker N. R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.  Biochimica et Biophysica Acta. (1989);  990 87-92
  • 16 Gunasekera D., Berkowitz G. A.. Heterogeneous stomatal closure in response to leaf water deficits is not a universal phenomenon.  Plant Physiology. (1992);  98 660-665
  • 17 James R. A., Rivelli A. R., Munns R., von Caemmerer S.. Factors influencing CO2 assimilation, leaf injury and growth in salt-stressed durum wheat.  Functional Plant Biology. (2002);  29 1393-1403
  • 18 Jiang Q., Roche D., Monaco T. A., Durham S.. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of fourteen barley genetic lines in response to salinity.  Field Crops Research.
  • 19 Kozaki A., Takeba G.. Photorespiration protects C3 plants from photo-oxydation.  Science. (1996);  384 557-560
  • 20 Krall J. P., Edwards G. E.. Relationship between photosystem II activity and CO2 fixation in leaves.  Physiologia Plantarum. (1992);  86 180-187
  • 21 Lal A., Ku M. S. B., Edwards G. E.. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba: electron transport, CO2 fixation and carboxylation capacity.  Photosynthesis Research. (1996);  49 57-69
  • 22 Loreto F., Di Marco G., Tricoli D., Sharkey T. D.. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves.  Photosynthesis Research. (1994);  41 397-403
  • 23 Lu C., Zhang J.. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants.  Australian Journal of Plant Physiology. (1998);  25 883-892
  • 24 Maslenkova L. T., Zanev Y., Popova L. P.. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids.  Journal of Plant Physiology. (1993);  142 629-634
  • 25 Medrano H., Escalona J. M., Bota J., Gulias J., Flexas J.. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter.  Annals of Botany. (2002);  89 895-905
  • 26 Quinones M. A., Lu Z. M., Zeiger E.. Genetic variation of stomatal conductance, blue light sensitivity and zeaxanthin content in guard cells of Pima cotton (Gossypium barbadense). .  Physiologia Plantarum. (1998);  103 560-566
  • 27 Renou J., Gerbaud A., Just D., Andre M.. Differing substomatal and chloroplastic CO2 concentrations in water-stressed wheat.  Planta. (1990);  182 415-419
  • 28 Sharkey T. D.. Water stress effects on photosynthesis.  Photosynthetica. (1990);  24 651
  • 29 Sharma P. K., Hall D. O.. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum.  Journal of Plant Physiology. (1991);  138 614-619
  • 30 Souza R. P., Machado E. C., Silva J. A. B., Lagoa A. M. M. A., Silveira J. A. G.. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.  Environmental and Experimental Botany. (2004);  51 45-56
  • 31 Toker C., Gorham J., Cagirgan M. I.. Assessment of response to drought and salinity stresses of barley (Hordeum vulgare L.) mutants.  Cereal Research Communications. (1999);  27 411-418
  • 32 Vadell J., Medrano H.. Effect of drought on subterranean clover. 2. Genetic variability of photosynthesis, transpiration and stomatal conductance.  Photosynthetica. (1992);  27 433-440
  • 33 von Caemmerer S., Farquhar G. D.. Some relationships between the biochemistry of photosynthesis and the gas exchanges of leaves.  Planta. (1981);  153 376-387
  • 34 Wingler A., Quick W. P., Bungard R. A., Bailey K. J., Lea P. J., Leegood R. C.. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of phosphorespiratory enzymes.  Plant, Cell and Environment. (1999);  22 361-373
  • 35 Yeo A. R., Caporn S. J. M., Flowers T. J.. The effect of salinity upon photosynthesis in rice (Oryza sativa L.): gas exchange by individual leaves in relation to their salt content.  Journal of Experimental Botany. (1985);  36 1240-1248

D. Roche

Plants, Soils, and Biometeorology Department
Utah State University

Logan, UT 84322-4820

USA

Email: droche@mendel.usu.edu

Editor: J. T. M. Elzenga

    >