Semin Reprod Med 2005; 23(3): 213-221
DOI: 10.1055/s-2005-872449
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Regulation of Meiotic Cell Divisions and Determination of Gamete Quality: Impact of Reproductive Toxins

Mary Ann Handel1 , Fengyun Sun1
  • 1The Jackson Laboratory, Bar Harbor, Maine
Further Information

Publication History

Publication Date:
01 August 2005 (online)

ABSTRACT

The events and tempo of mammalian meiosis show sexual dimorphism with gametogenic context having a significant influence on both chromosome dynamics and cell cycle transitions. However, although some regulators of the meiotic cell cycle may differ between males and females, there appears to be extraordinary conservation of key components in common with the mitotic cell cycle and between sexes in meiosis. Evidence is presented for the existence of meiotic checkpoints that might modify or ameliorate cellular error or damage by reproductive toxins. Although these checkpoints seem relatively inefficient, they may be more so in female meiosis than in male meiosis. Insight into mechanisms of meiotically acting reproductive toxins coupled with genetic models will ultimately bring about understanding of the basic mechanisms of meiotic cell divisions and chemically induced meiotic error.

REFERENCES

  • 1 Cobb J, Cargile B, Handel M A. Acquisition of competence to condense metaphase I chromosomes during spermatogenesis.  Dev Biol. 1999;  205 49-64
  • 2 Anderson L K, Reeves A, Webb L M, Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein.  Genetics. 1999;  151 1569-1579
  • 3 Cohen P, Pollard J W. Regulation of meiotic recombination and prophase I progression in mammals.  Bioessays. 2001;  23 996-1009
  • 4 Roeder G S, Bailis J M. The pachytene checkpoint.  Trends Genet. 2000;  16 395-403
  • 5 Yuan L, Liu J G, Zhao J, Brundell E, Daneholt B, Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility.  Mol Cell. 2000;  5 73-83
  • 6 Yuan L, Liu J G, Hoja M R, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3.  Science. 2002;  296 1115-1118
  • 7 Handel M A, Eppig J J. Sexual dimorphism in the regulation of mammalian meiosis. Meiosis and gametogenesis.  Curr Top Dev Biol. 1998;  37 333-358
  • 8 Hunt P A, Hassold T J. Sex matters in meiosis.  Science. 2002;  296 2181-2183
  • 9 Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes.  Chromosoma. 2004;  113 22-33
  • 10 Kalinowski R R, Berlot C H, Jones T L, Ross L F, Jaffe L A, Mehlmann L M. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway.  Dev Biol. 2004;  267 1-13
  • 11 Eppig J J. Regulation of mammalian oocyte maturation. In: The Ovary. New York; Raven Press 1993: 185-208
  • 12 Park J Y, Su Y Q, Ariga M, Law E, Jin S L, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle.  Science. 2004;  303 682-684
  • 13 Masui Y, Markert C L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.  J Exp Zool. 1971;  177 129-146
  • 14 Cobb J, Miyaike M, Kikuchi A, Handel M A. Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase IIα localization and chromosome condensation.  Chromosoma. 1999;  108 412-425
  • 15 Wolgemuth D J, Laurion E, Lele K M. Regulation of the mitotic and meiotic cell cycles in the male germ line.  Recent Prog Horm Res. 2002;  57 75-101
  • 16 Allen J W, Dix D J, Collins B W et al.. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes.  Chromosoma. 1996;  104 414-421
  • 17 Dix D J, Allen J W, Collins B W et al.. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility.  Proc Natl Acad Sci USA. 1996;  93 3264-3268
  • 18 Dix D J, Allen J W, Collins B W et al.. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes.  Development. 1997;  124 4595-4603
  • 19 Zhu D H, Dix D J, Eddy E M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes.  Development. 1997;  124 3007-3014
  • 20 Liu D, Matzuk M M, Sung W K, Guo Q X, Wang P, Wolgemuth D J. Cyclin A1 is required for meiosis in the male mouse.  Nat Genet. 1998;  20 377-380
  • 21 Liu D, Liao C, Wolgemuth D J. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice.  Dev Biol. 2000;  224 388-400
  • 22 Lincoln A J, Wickramasinghe D, Stein P et al.. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation.  Nat Genet. 2002;  30 446-449
  • 23 Chen M S, Hurov J, White L S, Woodford-Thomas G, Piwnica-Worms H. Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase.  Mol Cell Biol. 2001;  21 3853-3861
  • 24 Inselman A, Handel M A. Mitogen-activated protein kinase dynamics during the meiotic G2/MI transition of mouse spermatocytes.  Biol Reprod. 2004;  71 570-578
  • 25 Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. Cdk2 knockout mice are viable.  Curr Biol. 2003;  13 1775-1785
  • 26 Ortega S, Prieto I, Odajima J et al.. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice.  Nat Genet. 2003;  35 25-31
  • 27 Sun Q Y, Breitbart H, Schatten H. Role of the MAPK cascade in mammalian germ cells.  Reprod Fertil Dev. 1999;  11 443-450
  • 28 Colledge W H, Carlton M BL, Udy G B, Evans M J. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs.  Nature. 1994;  370 65-68
  • 29 Araki K, Naito K, Haraguchi S et al.. Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase.  Biol Reprod. 1996;  55 1315-1324
  • 30 Verlhac M-H, Kubiak J Z, Clarke H J, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes.  Development. 1994;  120 1017-1025
  • 31 Arrighi C D, Campana A, Schorderet-Slatkine S. A role for the MEK-MAPK pathway in okadaic acid-induced meiotic resumption of incompetent growing mouse oocytes.  Biol Reprod. 2000;  63 658-665
  • 32 Sette C, Barchi M, Bianchini A, Conti M, Rossi P, Geremia R. Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes.  J Biol Chem. 1999;  274 33571-33579
  • 33 Di Agostino S, Rossi P, Geremia R, Sette C. The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes.  Development. 2002;  129 1715-1727
  • 34 Dobson M J, Pearlman R E, Karaiskakis A, Spyropoulos B, Moens P B. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction.  J Cell Sci. 1994;  107 2749-2760
  • 35 Wiltshire T, Park C, Caldwell K A, Handel M A. Induced premature G2/M transition in pachytene spermatocytes includes events unique to meiosis.  Dev Biol. 1995;  169 557-567
  • 36 Tarsounas M, Pearlman R E, Moens P B. Meiotic activation of rat pachytene spermatocytes with okadaic acid: the behaviour of synaptonemal complex components SYN1/SCP1 and COR1/SCP3.  J Cell Sci. 1999;  112 423-434
  • 37 Hodges C A, LeMaire-Adkins R, Hunt P A. Coordinating the segregation of sister chromatids during the first meiotic division: evidence for sexual dimorphism.  J Cell Sci. 2001;  114 2417-2426
  • 38 Rhee K, Wolgemuth D J. The NIMA-related kinase 2, Nek2, is expressed in specific stages of the meiotic cell cycle and associates with meiotic chromosomes.  Development. 1997;  124 2167-2177
  • 39 Barr F A, Sillje H HW, Nigg E A. Polo-like kinases and the orchestration of cell division.  Nat Rev Mol Cell Biol. 2004;  5 429-441
  • 40 Inselman A, Eaker S, Handel M A. Temporal expression of cell cycle-related proteins during spermatogenesis: establishing a timeline for the onset of the meiotic divisions.  Cytogenet Genome Res. 2003;  103 277-284
  • 41 Pahlavan G, Polanski Z, Kalab P, Golsteyn R, Nigg E A, Maro B. Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte.  Dev Biol. 2000;  220 392-400
  • 42 Albertini D F. Regulation of meiotic maturation in the mammalian oocyte: interplay between exogenous cues and the microtubule cytoskeleton.  Bioessays. 1992;  14 97-103
  • 43 Sanfins A, Lee G Y, Plancha C E, Overstrom E W, Albertini D F. Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes.  Biol Reprod. 2003;  69 2059-2067
  • 44 Kallio M, Mustalahti T, Yen T J, Lahdetie J. Immunolocalization of α-tubulin, γ-tubulin, and CENP-E in male rat and male mouse meiotic divisions: pathway of meiosis I spindle formation in mammalian spermatocytes.  Dev Biol. 1998;  195 29-37
  • 45 Kallio M, Eriksson J E, Gorbsky G J. Differences in spindle association of the mitotic checkpoint protein Mad2 in mammalian spermatogenesis and oogenesis.  Dev Biol. 2000;  225 112-123
  • 46 Nicklas R B. How cells get the right chromosomes.  Science. 1997;  275 632-637
  • 47 Eaker S, Pyle A, Cobb J, Handel M A. Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice.  J Cell Sci. 2001;  114 2953-2965
  • 48 LeMaire-Adkins R, Radke K, Hunt P A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females.  J Cell Biol. 1997;  139 1611-1619
  • 49 Woods L M, Hodges C A, Baart E, Baker S M, Liskay M, Hunt P A. Chromosomal influence on meiotic spindle assembly: Abnormal meiosis I in female Mlh1 mutant mice.  J Cell Biol. 1999;  145 1395-1406
  • 50 Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy.  Nat Rev Genet. 2001;  2 280-291
  • 51 Barlow C, Liyanage M, Moens P B, Deng C X, Ried T, Wynshaw-Boris A. Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles.  Nat Genet. 1997;  17 462-466
  • 52 Tepperberg J H, Moses M J, Nath J. Colchicine effects on meiosis in the male mouse. 1. Meiotic prophase: synaptic arrest, univalents, loss of damaged spermatocytes and a possible checkpoint at pachytene.  Chromosoma. 1997;  106 183-192
  • 53 Tepperberg J H, Moses M J, Nath J. Colchicine effects on meiosis in the male mouse. II. Inhibition of synapsis and induction of nondisjunction.  Mutat Res. 1999;  429 93-105
  • 54 Allen J W, Gibson J B, Poorman P A, Backer L C, Moses M J. Synaptonemal complex damage induced by clastogenic and anti-mitotic chemicals: implications for non-disjunction and aneuploidy.  Mutat Res. 1988;  201 313-324
  • 55 Backer L C, Gibson J B, Moses M J, Allen J W. Synaptonemal complex damage in relation to meiotic chromosome aberrations after exposure of male mice to cyclophosphamide.  Mutat Res. 1988;  203 317-330
  • 56 Russell L B, Hunsicker P R, Johnson D K, Shelby M D. Unlike other chemicals, etoposide (a topoisomerase-II inhibitor) produces peak mutagenicity in primary spermatocytes of the mouse.  Mutat Res. 1998;  400 279-286
  • 57 Russell L B, Hunsicker P R, Hack A M, Ashley T. Effect of the topoisomerase-II inhibitor etoposide on meiotic recombination in male mice.  Mutat Res. 2000;  464 201-212
  • 58 Marchetti F, Bishop J B, Lowe X, Generoso W M, Hozier J, Wyrobek A J. Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse.  Proc Natl Acad Sci USA. 2001;  98 3952-3957
  • 59 Kallio M, Lahdetie J. Fragmentation of centromeric DNA and prevention of homologous chromosome separation in male mouse meiosis in vivo by the topoisomerase II inhibitor etoposide.  Mutagenesis. 1996;  11 435-443
  • 60 Cobb J, Reddy R K, Park C, Handel M A. Analysis of expression and function of topoisomerase I and II during meiosis in male mice.  Mol Reprod Dev. 1997;  46 489-498
  • 61 Mailhes J B, Marchetti F, Phillips G L, Barnhill D R. Preferential pericentric lesions and aneuploidy induced in mouse oocytes by topoisomerase II inhibitor etoposide.  Teratog Carcinog Mutagen. 1994;  14 39-51
  • 62 Mailhes J B, Marchetti F, Young D, London S N. Numerical and structural chromosome aberrations induced by etoposide (VP16) during oocyte maturation of mice: transmission to one-cell zygotes and damage to dictyate oocytes.  Mutagenesis. 1996;  11 357-361
  • 63 Hunt P A, Koehler K E, Susiarjo M et al.. Bisphenol A exposure causes meiotic aneuploidy in the female mouse.  Curr Biol. 2003;  13 546-553
  • 64 Schmid T E, Xu W, Adler I D. Detection of aneuploidy by multicolor FISH in mouse sperm after in vivo treatment with acrylamide, colchicine, diazepam or thiabendazole.  Mutagenesis. 1999;  14 173-179
  • 65 Baumgartner A, Schmid T E, Schuetz C G, Adler I D. Detection of aneuploidy in rodent and human sperm by multicolor FISH after chronic exposure to diazepam.  Mutat Res. 2001;  490 11-19
  • 66 Miller B M, Adler I D. Aneuploidy induction in mouse spermatocytes.  Mutagenesis. 1992;  7 69-76
  • 67 Yin H, Baart E, Bentzendahl I, Eichenlaub-Ritter U. Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes.  Mutagenesis. 1998;  13 567-580
  • 68 Sun F, Yin H, Eichenlaub-Ritter U. Differential chromosome behavior in mammalian oocytes exposed to the tranquilizer diazepam in vitro .  Mutagenesis. 2001;  16 407-417
  • 69 Yin H, Cukurcam S, Betzendahl I, Adler I D, Eichenlaub-Ritter U. Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes.  Chromosoma. 1998;  107 514-522
  • 70 Schmid T E, Attia S M, Baumgartner A, Nuesse M, Adler I D. Effects of chemicals on the duration of male meiosis in mice detected with laser scanning cytometry.  Mutagenesis. 2001;  16 339-343
  • 71 Adler I D, Schmid T E, Baumgartner A. Induction of aneuploidy in male mouse germ cells detected by the sperm-FISH assay: a review of the present data base.  Mutat Res. 2002;  504 173-182
  • 72 Sun F, Schmid T E, Schmid E, Baumgartner A, Adler I-D. Trichlorfon induces spindle disturbances in V79 cells and aneuploidy in male mouse germ cells.  Mutagenesis. 2000;  15 17-24
  • 73 Sun F Y, Betzendahl I, Shen Y, Cortvrindt R, Smitz J, Eichenlaub-Ritter U. Preantral follicle culture as a novel in vitro assay in reproductive toxicology testing in mammalian oocytes.  Mutagenesis. 2004;  19 13-25
  • 74 Roberts R, Stark J, Iatropoulou A, Becker D L, Franks S, Hardy K. Energy substrate metabolism of mouse cumulus-oocyte complexes: response to follicle-stimulating hormone is mediated by the phosphatidylinositol 3-kinase pathway and is associated with oocyte maturation.  Biol Reprod. 2004;  71 199-209
  • 75 Roberts R, Iatropoulou A, Ciantar D et al.. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro.  Biol Reprod. 2005;  72 107-118
  • 76 Eppig J J, O'Brien M J. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo.  Theriogenology. 1998;  49 415-422
  • 77 Handel M A, Caldwell K A, Wiltshire T. Culture of pachytene spermatocytes for analysis of meiosis.  Dev Genet. 1995;  16 128-139

Mary Ann HandelPh.D. 

The Jackson Laboratory, 600 Main Street

Bar Harbor, ME 04609

Email: mahandel@jax.org

    >