Plant Biol (Stuttg) 2005; 7(3): 266-275
DOI: 10.1055/s-2005-865621
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Family of CONSTANS-Like Genes in Physcomitrella patens

O. Zobell1 , G. Coupland1 , B. Reiss1
  • 1Max-Planck-Institut für Züchtungsforschung, Department of Plant Developmental Biology, Carl-von-Linné-Weg 10, 50829 Köln, Germany
Weitere Informationen

Publikationsverlauf

Received: February 9, 2005

Accepted: March 23, 2005

Publikationsdatum:
12. Mai 2005 (online)

Abstract

The CONSTANS (CO) gene plays a central role in the regulation of flowering time in Arabidopsis, and is a member of a family of 17 CO-like genes. CO and CO-like genes have been found in all flowering plants, but not in yeast and animals. To address the question of the origin of CO, we analysed this gene family in the moss Physcomitrella patens, a phylogenetically distant organism. Database searches in EST libraries that almost completely covered the Physcomitrella transcriptome, and Southern blotting, identified only three genes that had all of the hallmarks of CO. Further analysis demonstrated that these are most similar to CO-like genes AtCOL3/AtCOL4/AtCOL5, a group of Arabidopsis genes closely related to, but distinct from CO, suggesting that the CO branch of the AtCOL phylogeny does not exist in the Physcomitrella genome. Since 17 COL genes occur in Arabidopsis and only three closely related and two distantly related genes were found in Physcomitrella, the family of CO-like proteins appears to be smaller in Physcomitrella than in Arabidopsis, in agreement with observations made with other gene families. The data also indicate that CO-like genes must have existed in the common ancestor of bryophytes and flowering plants, and that CO originated in the group of CO-like genes represented by AtCOL3/AtCOL4/AtCOL5. Furthermore, expression of the three closely related Physcomitrella homologues is regulated by light, suggesting that the role of CO in flowering time control was probably derived from an ancestral function in light signal transduction.

References

  • 1 Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Miller W., Lipman D. J.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.  Nucleic Acids Research. (1997);  25 3389-3402
  • 2 Ashton N. W., Cove D. J.. The isolation and preliminary characterization of auxotrophic and analogue resistant mutants in the moss Physcomitrella patens. .  Molecular and General Genetics. (1977);  154 87-95
  • 3 Champagne C. E. M., Ashton N. W.. Ancestry of KNOX genes revealed by bryophyte (Physcomitrella patens) homologs.  New Phytologist. (2001);  150 23-36
  • 4 Cove D.. The moss, Physcomitrella patens. .  Journal of Plant Growth Regulation. (2000);  19 275-283
  • 5 Felsenstein J.. PHYLIP - Phylogeny Inference Package (Version 3.2).  Cladistics. (1989);  5 164-166
  • 6 Garner W. W., Allard H. A.. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants.  Journal of Agricultural Research. (1920);  18 553-606
  • 7 Griffiths S., Dunford R. P., Coupland G., Laurie D. A.. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. .  Plant Physiology. (2003);  131 1855-1867
  • 8 Hayama R., Yokoi S., Tamaki S., Yano M., Shimamoto K.. Adaptation of photoperiodic control pathways produces short-day flowering in rice.  Nature. (2003);  422 719-722
  • 9 Hayama R., Coupland G.. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice.  Plant Physiology. (2004);  135 677-684
  • 10 Henschel K., Kofuji R., Hasebe M., Saedler H., Münster T., Theißen G.. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. .  Molecular Biology and Evolution. (2002);  19 801-814
  • 11 Holtorf H., Frank W., Reski R.. Applied genomics in Physcomitrella. . Wood, A. J., Oliver, M. J., and Cove, D. J., eds. New Frontiers in Bryology: Physiology, Molecular Biology and Applied Genomics. Dordrecht, The Netherlands; Kluwer Academic Press (2004): 51-70
  • 12 Imaizumi T., Tran H. G., Swart T. E., Briggs W. R., Kay S. A.. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. .  Nature. (2003);  426 302-306
  • 13 Kim S.-J., Moon J., Lee I., Maeng J., Kim S.-R.. Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil. .  Journal of Experimental Botany. (2003);  54 1879-1887
  • 14 Kofuji R., Sumikawa N., Yamasaki M., Kondo K., Ueda K., Ito M., Hasebe M.. Evolution and divergence of the MADS-box gene family based on genomewide expression analyses.  Molecular Biology and Evolution. (2003);  20 1963-1977
  • 15 Krogan N. T., Ashton N. W.. Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues.  New Phytologist. (2000);  147 505-517
  • 16 Ledger S., Strayer C., Ashton F., Kay S. A., Putterill J.. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes.  The Plant Journal. (2001);  26 15-22
  • 17 Lippuner V., Cyert M. S., Gasser C. S.. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast.  Journal of Biological Chemistry. (1996);  271 12859-12866
  • 18 Liu J., Yu J., McIntosh L., Kende H., Zeevaart J. A. D.. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering.  Plant Physiology. (2001);  125 1821-1830
  • 19 Markmann-Mulisch U., Reiss B., Mulisch M.. Cell type-specific gene expression in the cell cycle of the dimorphic ciliate Eufolliculina uhligi. .  Molecular and General Genetics. (1999);  262 390-399
  • 20 Markmann-Mulisch U., Hadi M. Z., Koepchen K., Alonso J. C., Russo V. E. A., Schell J., Reiss B.. The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 2959-2964
  • 21 Martinez-Garcia J. F., Virgos-Soler A., Prat S.. Control of photoperiod regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 15211-15216
  • 22 Nemoto Y., Kisaka M., Fuse T., Yano M., Ogihara Y.. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice.  The Plant Journal. (2003);  36 82-93
  • 23 Nishiyama T., Fujita T., Shin I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 8007-8012
  • 24 Putterill J., Robson F., Lee K., Simon R., Coupland G.. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.  Cell. (1995);  80 847-857
  • 25 Rensing S. A., Rombauts S., Hohe A., Lang D., Duwenig E., Rouze P., Van de Peer Y., Reski R.. The transcriptome of the moss Physcomitrella patens: comparative analysis reveals a rich source of new genes. http://www.plantbiotech.net/Rensing_et_al_transcriptome2002.pdf. (2002 a)
  • 26 Rensing S. A., Rombauts S., Van de Peer Y., Reski R.. Moss transcriptome and beyond.  Trends in Plant Science. (2002 b);  7 535-538
  • 27 Reski R.. Physcomitrella and Arabidopsis - the David and Goliath of reverse genetics.  Trends in Plant Science. (1998);  3 209-210
  • 28 Reski R., Cove D.. Physcomitrella patens. .  Current Biology. (2004);  14 R261-R262
  • 29 Reyes J. C., Muro-Pastor M. I., Florencio F. J.. The GATA family of transcription factors in Arabidopsis and rice.  Plant Physiology. (2004);  134 1718-1732
  • 30 Robert L. S., Robson F., Sharpe A., Lydiate D., Coupland G.. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. .  Plant Molecular Biology. (1998);  37 763-772
  • 31 Robson F., Costa M. M. R., Hepworth S. R., Vizir I., Piñieiro M., Reeves P. H., Putterill J., Coupland G.. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.  The Plant Journal. (2001);  28 619-631
  • 32 Saitou N., Nei M.. The neighbor-joining method: a new method for reconstructing phylogenetic trees.  Molecular Biology and Evolution. (1987);  4 406-425
  • 33 Sakakibara K., Nishiyama T., Kato M., Hasebe M.. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants.  Molecular Biology and Evolution. (2001);  18 491-502
  • 34 Schaefer D. G., Zrӱd J. P.. Efficient gene targeting in the moss Physcomitrella patens. .  The Plant Journal. (1997);  11 1195-1206
  • 35 Schipper O., Schaefer D., Reski R., Fleming A.. Expansins in the bryophyte Physcomitrella patens. .  Plant Molecular Biology. (2002);  50 789-802
  • 36 Searle I., Coupland G.. Induction of flowering by seasonal changes in photoperiod.  The EMBO Journal. (2004);  23 1217-1222
  • 37 Shimizu M., Ichikawa K., Aoki S.. Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. .  Biochemical and Biophysical Research Communications. (2004);  324 1296-1301
  • 38 Shin B.-S., Lee J.-H., Lee J.-H., Jeong H.-J., Yun C.-H., Kim J.-K.. Circadian regulation of rice (Oryza Sativa L.) CONSTANS-like gene transcripts.  Molecular Cells. (2004);  17 10-16
  • 39 Strayer C., Oyama T., Schultz T. F., Raman R., Somers D. E., Mas P., Panda S., Kreps J. A., Kay S. A.. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.  Science. (2000);  289 768-771
  • 40 Suarez-Lopez P., Wheatley K., Robson F., Onouchi H., Valverde F., Coupland G.. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. .  Nature. (2001);  410 1116-1120
  • 41 Thompson J. D., Higgins D. G., Gibson T. J.. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice.  Nucleic Acids Research. (1994);  22 4673-4680
  • 42 Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A., Coupland G.. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.  Nature. (2004);  303 1003-1006
  • 43 Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y., Nagamura Y., Sasaki T.. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS.  Plant Cell. (2000);  12 2473-2484
  • 44 Yanovsky M. J., Kay S. A.. Molecular basis of seasonal time measurement in Arabidopsis. .  Nature. (2002);  419 308-312

B. Reiss

Max-Planck-Institut für Züchtungsforschung
Department of Plant Developmental Biology

Carl-von-Linné-Weg 10

50829 Köln

Germany

eMail: reiss@mpiz-koeln.mpg.de

Guest Editor: R. Reski

    >