Semin Vasc Med 2004; 04(3): 271-278
DOI: 10.1055/s-2004-861495
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

β-Thalassemia Is a Modifying Factor of the Clinical Expression of Familial Hypercholesterolemia

Sebastiano Calandra1 , Stefano Bertolini2 , Giovanni Mario Pes3 , Luca Deiana3 , Patrizia Tarugi1 , Livia Pisciotta2 , Salvatore Li Volti4 , Giovanni Li Volti4 , Carmela Maccarone4
  • 1Department of Biomedical Sciences, University of Modena & Reggio Emilia, Modena
  • 2Department of Internal Medicine, University of Genova, Genova
  • 3Institute of Clinical Biochemistry, University of Sassari, Sassari
  • 4Department of Pediatrics, University of Catania, Catania, Italy
Further Information

Publication History

Publication Date:
03 January 2005 (online)

ABSTRACT

Familial hypercholesterolemia (FH) is a codominant disorder due to a variety of mutations of the low-density lipoprotein (LDL) receptor gene that result in an elevation of plasma LDL-cholesterol (LDL-C). Plasma levels of LDL-C show large interindividual variation even in subjects carrying the same mutation of the LDL receptor gene. This variability may be due to genetic factors (modifier genes). Several surveys indicate that the overall contribution of common polymorphisms of modifier genes (such as the genes encoding apolipoproteins E and B) to this variability is less than 10%. In contrast, β-thalassemia has a profound LDL-lowering effect. This was documented in FH patients identified on the island of Sardinia, in Italy, where 12% of the inhabitants are carriers of β-thalassemia due to a single mutation (Q39X) of the β-globin gene that abolishes the synthesis of β-globin chain of hemoglobin (β°-thalassemia). Plasma LDL-C in FH heterozygotes carrying the β°-thalassemia trait is 25% lower than in noncarriers, regardless of the LDL receptor gene mutation. It is likely that this effect is due to two main mechanisms: (1) increased uptake of LDL by the bone marrow to provide cholesterol for the increased proliferation of erythroid progenitor cells and (2) increased production of inflammatory cytokines that reduce the hepatic secretion and increase the catabolism of LDL. In view of its LDL-C-lowering effect, β-thalassemia trait may protect FH heterozygotes against premature coronary atherosclerosis.

REFERENCES

  • 1 Goldstein J L, Hobbs H H, Brown M S. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle I The Metabolic and Molecular Bases of Inherited Disease New York; McGraw-Hill 2001: 2863-2913
  • 2 Bertolini S, Cassanelli S, Garuti R et al.. Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 1999;  19 408-418
  • 3 Bertolini S, Cantafora A, Averna M et al.. Clinical expression of familial hypercholesterolemia in clusters of mutations of LDL-receptor gene causing receptor-defective or receptor-negative phenotype.  Arterioscler Thromb Vasc Biol. 2000;  20 e41-e52
  • 4 Hallman D M, Boerwinkle E, Saha N et al.. The apolipoprotein E polymorphism: a comparison of allele frequencies and effects in nine populations.  Am J Hum Genet. 1991;  49 338-349
  • 5 Dallongeville J, Roy M, Leboeuf N, Xhignesse M, Davignon J, Lussier-Cacan S. Apolipoprotein E polymorphism association with lipoprotein profile in endogenous hypertriglyceridemia and familial hypercholesterolemia.  Arterioscler Thromb. 1991;  11 272-278
  • 6 Ferrières J, Lambert J, Lussier-Cacan S, Davignon J. Coronary artery disease in heterozygous familial hypercholesterolemia patients with the same LDL-receptor gene mutation.  Circulation. 1995;  92 290-295
  • 7 Lambert M, Assouline L, Feoli-Fonseca J C, Brun N, Delvin E E, Levy E. Determinants of lipid level variability in French-Canadian children with familial hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 2001;  21 979-984
  • 8 Vuorio A F, Turtola H, Piilahti K-M, Repo P, Kanninen T, Kontula K. Familial hypercholesterolemia in the Finnish North Karelia.  Arterioscler Thromb Vasc Biol. 1997;  17 3127-3138
  • 9 Lengheim S, Rolleri M, Belloccio A et al.. Gene-gene interaction in familial hypercholesterolemia. Presented at the 15th Congress of the Italian Society of Atherosclerosis, November 29-December 2 2001 Rome; A99
  • 10 Karpe F, Lundahl B, Ehrenborg E, Eirksson P, Hamsten A. A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels.  Arterioscler Thromb Vasc Biol. 1998;  18 756-761
  • 11 Lundahl B, Leren T P, Ose L, Hamsten A, Karpe F. A functional polymorphism in the promoter region of the microsomal triglyceride transfer protein (MTP- 493G/T) influences lipoprotein phenotype in familial hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 2000;  20 1784-1788
  • 12 Van’t Hooft F M, Jormsjo S, Lundhal B, Torvall P, Erikson P, Hamsten A. A functional polymorphism in the apolipoprotein B promoter that influences the level of plasma low density lipoprotein.  J Lipid Res. 1999;  40 1686-1694
  • 13 Pimstone S N, Sun X-M, du Souich C, Frohlich J J, Hayden M R, Soutar A K. Phenotypic variation in heterozygous familial hypercholesterolemia. A comparison of Chinese patients with the same or similar mutations in the LDL receptor gene in China and Canada.  Arterioscler Thromb Vasc Biol. 1998;  18 309-315
  • 14 Schonfeld G. Familial hypobetalipoproteinemia: a review.  J Lipid Res. 2003;  44 878-883
  • 15 Deiana L, Garuti R, Pes G M et al.. Influence of β°-thalassemia on the phenotypic expression of heterozygous familial hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 2000;  20 236-243
  • 16 Weatherall D J, Clegg J B, Higgs D R, Wood W G. The hemoglobinopathies. In: Scriver CR, Beaudet AL, Sly WS, Valle I The Metabolic and Molecular Bases of Inherited Disease New York; McGraw-Hill 2001: 4571-4636
  • 17 Silvestroni Bianco I. Le Talassemie. Rome; Istituto Italiano di Medicina Sociale 1998: 163-179
  • 18 Rosatelli M C, Dozy A, Faà V et al.. Molecular characterization of β-thalassemia in the Sardinian population.  Am J Hum Genet. 1992;  50 422-426
  • 19 Piazza A. Who are the Europeans?.  Science. 1993;  260 1767-1769
  • 20 Lukens J N. The thalassemia and related disorders. Quantitative disorders of hemoglobin synthesis. In: Lee GR, Bithell TC, Foester J, Athens JW Lukens JN Wintrobe's Clinical Hematology Philadelphia; Lea & Febiger 1993: 1102-1145
  • 21 Westerman M P. Hypocholesterolemia and anaemia.  Br J Haematol. 1975;  31 87-94
  • 22 Seip M, Skrede S. Serum cholesterol and triglycerides in children with anaemia.  Scand J Haematol. 1977;  19 503-508
  • 23 Skrede S, Seip M. Serum lipoproteins in children with anaemia.  Scand J Haematol. 1979;  23 232-238
  • 24 Giardini O, Murgia F, Martino F, Mannarino O, Corrado G, Maggioni G. Serum lipid pattern in β-thalassemia.  Acta Haematol. 1978;  60 100-107
  • 25 Maioli M, Cuccuru G B, Pranzetti P, Pacifico A, Cerchi G M. Plasma lipids and lipoproteins pattern in beta-thalassemia major.  Acta Haematol. 1984;  71 106-110
  • 26 Maioli M, Vigna G B, Tonolo G et al.. Plasma lipoprotein composition, apolipoprotein(a) concentration and isoforms in β-thalassemia.  Atherosclerosis. 1997;  131 127-133
  • 27 Goldfarb A W, Rachmilewitz E A, Eisemberg S. Abnormal low and high density lipoproteins in homozygous beta-thalassemia.  Br J Haematol. 1991;  79 481-486
  • 28 Hartman C, Tamary H, Tamir A et al.. Hypocholesterolemia in children and adolescents with β-thalassemia intermedia.  J Pediatr. 2002;  141 543-547
  • 29 Maioli M, Pettinato S, Cherchi G M et al.. Plasma lipids in beta-thalassemia minor.  Atherosclerosis. 1989;  75 245-248
  • 30 Crowley J P, Sheth S, Capone R J, Schilling R F. A paucity of thalassemia trait in Italian men with myocardial infarction.  Acta Haematol. 1987;  78 249-251
  • 31 Gallerani M, Scapoli C, Cicognani I et al.. Thalassemia trait and myocardial infarction: low infarction incidence in male subjects confirmed.  J Intern Med. 1991;  230 109-111
  • 32 Wang C-H, Schilling R F. Myocardial infarction and thalassemia trait: an example of heterozygote advantage.  Am J Hematol. 1995;  49 73-75
  • 33 Tassiopoulos T, Stamatelos G, Zakopoulos N, Fessas P, Eliopoulos G D. Low incidence of acute myocardial infarction in beta-thalassemia trait carriers.  Haematologia (Budap). 1995;  26 199-203
  • 34 Deiana L, Pes G M, Carru C et al.. β-Thalassemia trait and G6PD deficiency are associated with increased longevity in Sardinia.  Clin Chem. 2000;  46 A210
  • 35 Ho Y K, Graham Smith R, Brown M S, Goldstein J L. Low density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells.  Blood. 1978;  52 1099-1114
  • 36 Davies P F, Kerr C. Modification of low density lipoprotein metabolism by growth factors in cultured vascular cells and human skin fibroblasts.  Biochim Biophys Acta. 1982;  712 26-32
  • 37 Mazzone T, Basheeruddin K, Ping L, Frazer S, Getz G S. Mechanism of the growth-related activation of the low density lipoprotein receptor pathway.  J Biol Chem. 1989;  264 1787-1792
  • 38 Cuthbert J A, Lipsky P E. Mitogenic stimulation alters the regulation of LDL receptor gene expression in human lymphocytes.  J Lipid Res. 1990;  31 2067-2078
  • 39 Nicholson A C, Hajjar D P. Transforming growth factor-β up regulates low density lipoprotein receptor-mediated cholesterol metabolism in vascular smooth muscle cells.  J Biol Chem. 1992;  267 25982-25987
  • 40 Hsu H-Y, Nicholson A C, Hajjar D P. Basic fibroblast growth factor-induced low density lipoprotein receptor transcription and surface expression.  J Biol Chem. 1994;  269 9213-9220
  • 41 Pak Y K, Kanuck M P, Berrios D, Briggs M R, Cooper A D, Ellsworth J L. Activation of LDL receptor gene expression in HepG2 cells by hepatocyte growth factor.  J Lipid Res. 1996;  37 985-998
  • 42 Gilbert H S, Ginsberg H, Fagerstrom R, Brown W. Characterization of hypocholesterolemia in myeloproliferative disease.  Am J Med. 1981;  71 595-602
  • 43 Vitols S, Bjorkholm M, Gahrton G, Peterson C. Hypocholesterolemia in malignancy due to elevated low density lipoprotein receptor activity in tumor cells: evidence from studies in patients with leukaemia.  Lancet. 1985;  2 1150-1154
  • 44 Vitols S, Angelin B, Ericson S et al.. Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy.  Proc Natl Acad Sci U S A. 1990;  87 2598-2602
  • 45 Vitols S, Norgren S, Juliusson G, Taditis L, Luthman H. Multilevel regulation of low density lipoprotein receptor activity and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in normal and leukemic cells.  Blood. 1994;  84 2689-2698
  • 46 Taditis L, Gruber A, Vitols S. Decreased feedback regulation of low density lipoprotein receptor activity by sterols in leukemia cells from patients with acute myelogenic leukaemia.  J Lipid Res. 1997;  38 2436-2445
  • 47 Taditis L, Masqueller M, Vitols S. Elevated uptake of low density lipoprotein by drug resistant human leukemic cell lines.  Biochem Pharmacol. 2002;  63 2169-2180
  • 48 Hardardottir I, Grunfeld C, Feingold K R. Effects of endotoxin and cytokines on lipid metabolism.  Curr Opin Lipidol. 1994;  5 207-215
  • 49 Morby C D, Gherardi E, Dovey L, Godliman C, Bowyer D E. Transforming growth factor-β1 and interleukin-1β stimulate LDL receptor activity in HepG2 cells.  Atherosclerosis. 1992;  97 21-28
  • 50 Stopeck A T, Nicholson A C, Mancini F, Hajjar D P. Cytokine regulation of low density lipoprotein receptor gene transcription in HepG2 cells.  J Biol Chem. 1993;  268 17489-17494
  • 51 Grove R I, Mazzucco C E, Radka S F, Shoyab M. Oncostatin M upregulates LDL receptor in HepG2 cells by a novel mechanism.  J Biol Chem. 1991;  266 18194-18199
  • 52 Ettinger W H, Varma V K, Sorci-Thomas M et al.. Cytokines decrease apolipoprotein accumulation in medium from HepG2 cells.  Arterioscler Thromb. 1994;  14 8-13
  • 53 Yokoyama K, Ishibashi T, Yi-Qiang L, Nagayoshi A, Teramoto T, Maruyama Y. Interleukin-1β and interleukin-6 increase levels of apolipoprotein B mRNA and decrease accumulation of its protein in culture medium of HepG2 cells.  J Lipid Res. 1998;  39 103-113
  • 54 Navasa M, Gordon D A, Hariharan N et al.. Regulation of microsomal triglyceride transfer protein mRNA expression by endotoxin and cytokines.  J Lipid Res. 1998;  39 1220-1230
  • 55 Miller Y I, Felikman Y, Shaklai N. Hemoglobin induced apolipoprotein B crosslinking in low density lipoprotein peroxidation.  Arch Biochem Biophys. 1996;  326 252-260
  • 56 Altamentova S M, Marva E, Shaklai N. Oxidative interaction of unpaired haemoglobin chains with lipids and proteins: a key for modified serum lipoprotein in thalassemia.  Arch Biochem Biophys. 1997;  345 39-46
  • 57 Livrea M A, Tesoriere L, Maggio A, D’Arpa D, Pintuaidi A M, Pedone E. Oxidative modification of low-density lipoprotein and atherogenetic risk in β-thalassemia.  Blood. 1998;  92 3936-3942
  • 58 Yang B, Kirby S, Lewis J, Detloff P J, Maeda N, Smithies O. A mouse model for β°-thalassemia.  Proc Natl Acad Sci U S A. 1995;  92 11608-11612
  • 59 Lewis J, Yang B, Kim R et al.. A common human β globin splicing mutation modeled in mice.  Blood. 1998;  91 2152-2156

 Dr.
Sebastiano Calandra

Department of Biomedical Sciences, University of Modena & Reggio Emilia

Via Campi 287, 41100 Modena, Italy

    >