Plant Biol (Stuttg) 2005; 7(1): 15-22
DOI: 10.1055/s-2004-830445
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Glycine Decarboxylase Complex is not Essential for the Cyanobacterium Synechocystis sp. Strain PCC 6803

M. Hagemann1 , J. Vinnemeier1 , 2 , I. Oberpichler1 , 3 , R. Boldt1 , H. Bauwe1
  • 1Universität Rostock, FB Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Straße 3 a, 18051 Rostock, Germany
  • 2Present address: Roche Diagnostics GmbH Penzberg, Pharmaceutical Biotech Production, Nonnenwald 2, 82372 Penzberg, Germany
  • 3Present address: Freie Universität Berlin, Institut für Biologie, Pflanzenphysiologie, Königin-Luise-Straße 12 - 16, 14195 Berlin, Germany
Further Information

Publication History

Received: August 23, 2004

Accepted: October 11, 2004

Publication Date:
06 December 2004 (online)

Abstract

In order to investigate the metabolic importance of glycine decarboxylase (GDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. PCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.

References

  • 1 Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.  Nucleic Acids Research. (1997);  25 3389-3402
  • 2 Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. .  Nature. (2000);  408 796-815
  • 3 Bauwe H., Kolukisaoglu Ü.. Genetic manipulation of glycine decarboxylation.  Journal of Experimental Botany. (2003);  54 1523-1535
  • 34 Birmingham B. C., Colman J. R., Colman B.. Measurement of photorespiration in algae.  Plant Physiology. (1982);  69 259-262
  • 4 Codd G. A., Stewart W. D. P.. Pathways of glycollate metabolism in the bluegreen alga Anabaena cylindrica. .  Archiv Mikrobiologie. (1973);  94 11-28
  • 5 Colman B.. Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria.  Aquatic Botany. (1989);  34 211-231
  • 6 Douce R., Bourguignon J., Neuburger M., Rebeille F.. The glycine decarboxylase system: a fascinating complex.  Trends in Plant Science. (2001);  6 167-176
  • 7 Engels A., Pistorius E. K.. Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. strain PCC 6803.  Microbiology. (1997);  143 3543-3553
  • 8 Geigenberger P., Lerchl J., Stitt M., Sonnewald U.. Phloem-specific expression of pyrophosphatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants.  Plant, Cell and Environment. (1996);  19 43-55
  • 9 Gollan T., Schurr U., Schulze E.-D.. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus I. The concentration of cations, anions and amino acids in and pH of the xylem sap.  Plant, Cell and Environment. (1992);  15 551-559
  • 10 Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B., Goldman B. S., Cao Y., Askenazi M., Halling C., Mullin L., Houmiel K., Gordon J., Vaudin M., Iartchouk O., Epp A., Liu F., Wollam C., Allinger M., Doughty D., Scott C., Lappas C., Markelz B., Flanagan C., Crowell C., Gurson J., Lomo C., Sear C., Strub G., Cielo C., Slater S.. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58.  Science. (2001);  294 2323-2328
  • 11 Hagemann M., Schoor A., Jeanjean R., Zuther E., Joset F.. The stpA gene from Synechocystis sp. strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial osmotic response to salt shock.  Journal of Bacteriology. (1997);  179 1727-1733
  • 12 Heineke D., Bykova N., Gardeström P., Bauwe H.. Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase.  Planta. (2001);  212 880-887
  • 13 Huckauf J., Nomura C., Forchhammer K., Hagemann M.. Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors.  Microbiology. (2000);  146 2877-2889
  • 14 Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura S., Hosouchi T., Matsuno A., Muraki A., Nakazaki A., Nruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S.. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential proteincoding regions.  DNA Research. (1996);  3 109-136
  • 15 Kaplan A., Schwarz R., Lieman-Hurwitz J., Ronen-Tarazi M., Reinhold L.. Physiological and molecular studies on the response of cyanobacteria to changes in the ambient inorganic carbon concentration. Bryant, D. A., ed. The Molecular Biology of Cyanobacteria. Dordrecht; Kluwer Academic Publishers (1994): 469-485
  • 16 Kopriva S., Turner S. R., Rawsthorne S., Bauwe H.. T-protein of the glycine decarboxylase multienzyme complex: evidence for partial similarity to formyltetrahydrofolate synthetase.  Plant Molecular Biology. (1995);  27 1215-1220
  • 17 Kruger N., Oppermann F. B., Lorenzl H., Steinbüchel A.. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.  Journal of Bacteriology. (1994);  176 3614-3630
  • 18 Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S. C., Bron S., Brouillet S., Bruschi C. V., Caldwell B., Capuano V., Carter N. M., Choi S. K.. et al. . The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. .  Nature. (1997);  390 249-256
  • 19 Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., Penny D.. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 12246-12251
  • 20 McGinn P. J., Price D. G., Maleszka R., Badger M. R.. Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC6803.  Plant Physiology. (2003);  132 218-229
  • 21 Ng W. V., Kennedy S. P., Mahairas G. G., Berquist B., Pan M., Shukla H. D., Lasky S. R., Baliga N., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T. A., Welti R., Goo Y. A., Leithauser B., Keller K., Cruz R., Danson M. J., Hough D. W., Maddocks D. G., Jablonski P. E., Krebs M. P., Angevine C. M.. et al. . Genome sequence of Halobacterium species NRC-1.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 12176-12181
  • 22 Quintero M. J., Montesinos M. L., Herrero A., Flores E.. Identification of genes encoding amino acid permeases by inactivation of selected ORFs from the Synechocystis genomic sequence.  Genome Research. (2001);  11 2034-2040
  • 23 Renström-Kellner E., Bergman B.. Glycolate metabolism in cyanobacteria. IV. Uptake, growth and metabolic pathways.  Physiologia Plantarum. (1990);  78 285-292
  • 24 Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. Generic assignments, strain histories and properties of pure cultures of cyanobacteria.  Journal of General Microbiology. (1979);  111 1-16
  • 25 Rocap G., Larimer F. W., Lamerdin J., Malfatti S., Chain P., Ahlgren N. A., Arellano A., Coleman M., Hauser L., Hess W. R., Johnson Z. I., Land M., Lindell D., Post A. F., Regala W., Shah M., Shaw S. L., Steglich C., Sullivan M. B., Ting C. S., Tolonen A., Webb E. A., Ziser E. R., Chisholm S. W.. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation.  Nature. (2003);  424 1042-1047
  • 26 Sambrook J., Fritsch E. F., Maniatis T.. Molecular Cloning. Cold Spring Harbor, NY; Cold Spring Harbour Press (1989)
  • 27 Sasaki T., Matsumoto T., Yamamoto K., Sakata K., Baba T., Katayose Y., Wu J., Niimura Y., Cheng Z., Nagamura Y., Antonio B. A., Kanamori H., Hosokawa S., Masukawa M., Arikawa K., Chiden Y., Hayashi M., Okamoto M., Ando T., Aoki H., Arita K., Hamada M., Harada C., Hijishita S., Honda M., Ichikawa Y., Idonuma A., Iijima M., Ikeda M., Ikeno M., Itoh S., Itoh T., Itoh Y., Itoh Y., Iwabuchi A., Kamiya K., Karasawa W., Katagiri S., Kikuta A., Kobayashi N., Kono I.. et al. . The genome sequence and structure of rice chromosome 1.  Nature. (2002);  420 312-316
  • 28 Stover C. K., Pham X.-Q. T., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J., Lagrou M., Garber R. L., Goltry L., Tolentino E., Westbrook-Wadman S., Yuan Y., Brody L. L., Coulter S. N., Folger K. R., Kas A., Larbig K., Lim R. M., Smith K. A., Spencer D. H., Wong G. K.-S., Wu Z., Paulsen I. T., Reizer J., Saier M. H., Hancock R. E. W., Lory S., Olson M. V.. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen.  Nature. (2000);  406 959-964
  • 29 Takami H., Nakasone K., Takaki Y., Maeno G., Sasaki Y., Masui N., Fuji F., Hirama C., Nakamura Y., Ogasawara N., Kuhara S., Horikoshi K.. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. .  Nucleic Acids Research. (2000);  28 4317-4331
  • 30 Tolbert N. E.. The oxidative photosynthetic carbon cycle. Randall, D. D., Blevis, D. G., and Larson, R., eds. Current Topics in Plant Biochemistry, Vol. 1. Columbia, MO; University Missouri (1983): 63-77
  • 31 Wang H. L., Postier B. L., Burnap R. L.. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator.  Journal of Biological Chemistry. (2004);  279 5739-5751
  • 32 Wilson R. L., Stauffer L. T., Stauffer G. V.. Roles of the gcvA and purr proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system.  Journal of Bacteriology. (1993);  175 5129-5134
  • 33 Wingler A., Lea P. J., Leegood R. C.. Control of photosynthesis in barley plants with reduced activities of glycine decarboxylase.  Planta. (1997);  202 171-178

M. Hagemann

Universität Rostock
FB Biowissenschaften, Pflanzenphysiologie

Albert-Einstein-Straße 3 a

18051 Rostock

Germany

Email: martin.hagemann@biologie.uni-rostock.de

Editor: R. Mendel

    >