Fortschr Neurol Psychiatr 2005; 73(12): 715-727
DOI: 10.1055/s-2004-830256
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Fortschritte in Pathogeneseforschung und Therapie der Multiplen Sklerose

Recent Advances in Pathogenesis and Therapy of Multiple SclerosisR.  A.  Linker1, 3 , C.  Stadelmann2 , R.  Diem3 , M.  Bähr1, 3 , W.  Brück1, 2 , R.  Gold1
  • 1Institut für Multiple Sklerose Forschung (Geschäftsführender Vorsitzender: Prof. Dr. med. Ralf Gold), Bereich Humanmedizin, Georg-August-Universität Göttingen und Gemeinnützige Hertie-Stiftung
  • 2Abteilung Neuropathologie (Direktor: Prof. Dr. med. Wolfgang Brück), Bereich Humanmedizin, Georg-August-Universität Göttingen
  • 3Abteilung Neurologie (Direktor: Prof. Dr. med. Mathias Bähr), Bereich Humanmedizin, Georg-August-Universität Göttingen
Further Information

Publication History

Publication Date:
15 December 2005 (online)

Zusammenfassung

In dieser Übersichtsarbeit stellen wir die in den letzten Jahren erzielten Fortschritte bei der Erforschung der Multiplen Sklerose dar und diskutieren sie kritisch. Aus klinischen, bildgebenden, pathologischen, immunologischen und tierexperimentellen Studien resultierten neue Erkenntnisse zur Pathogenese und Therapie der MS. Schwerpunkte liegen insbesondere auf neurodegenerativen Aspekten der Erkrankung sowie auf therapierelevanten Befunden, die bereits zu einer deutlichen Verbesserung der Immuntherapie im letzten Jahrzehnt führten. Vor allem bei der schubförmig verlaufenden MS kann seit der Einführung der Immunmodulation mit Interferonen und Glatiramerazetat in vielen Fällen die Krankheit durch adäquate und frühe Behandlung langfristig stabilisiert werden. In naher Zukunft sind neue Immuntherapeutika, aber wahrscheinlich auch individualisierte Behandlungsansätze zu erwarten. Die weitere Entwicklung neurobiologisch-protektiver Strategien soll gezielt das Überleben von Glia- und Nervenzellen fördern.

Abstract

In this article, recent advances in the research on pathogenesis and therapy of multiple sclerosis (MS) will be summarized. New evidence from clinical studies, imaging, histopathology and experimental models are discussed with a focus on neurodegenerative aspects and evidence from recent therapeutic studies. During the last decade, important advances in immunotherapy have been achieved, which proved especially useful for patients with relapsing remitting MS. The introduction of interferons and glatiramer acetate into MS therapy often leads to a stabilization of the disease course if administered adequately and early. The pathogenetic insights presented here may open new avenues for innovative immunodulatory approaches and lead to an individualized MS therapy in the future. Neuroprotective treatment strategies aim at the protection of glial and neuronal cells.

Literatur

  • 1 Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H. Patterns of oligodendroglia pathology in multiple sclerosis.  Brain. 1994;  117 1311-1322
  • 2 Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases.  Brain. 1999;  122 2279-2295
  • 3 Lucchinetti C F, Brück W, Rodriguez M, Lassmann H. Distinct patterns of Multiple Sclerosis pathology indicates heterogeneity in pathogenesis.  Brain Pathol. 1996;  6 259-274
  • 4 Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy.  Trends Mol Med. 2001;  7 115-121
  • 5 Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W, Lucchinetti C, Schmidbauer M, Jellinger K, Lassmann H. Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases.  J Neuropathol Exp Neurol. 2003;  62 (1) 25-33
  • 6 Weinshenker B G, O'Brien P C, Petterson T M, Noseworthy J H, Lucchinetti C F, Dodick D W, Pineda A A, Stevens L N, Rodriguez M. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease.  Ann Neurol. 1999;  46 878-886
  • 7 Yao D-L, Webster H D, Hudson L D, Brenner M, Liu D-S, Escobar A I, Komoly S. Concentric sclerosis (Balo): Morphometric and in situ hybridization study of lesions in six patients.  Ann Neurol. 1994;  35 18-30
  • 8 Lucchinetti C F, Mandler R N, McGavern D, Brück W, Gleich G, Ransohoff R M, Trebst C, Weinshenker B, Wingerchuk D, Parisi J E, Lassmann H. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica.  Brain. 2002;  125 1450-1461
  • 9 Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.  Brain. 2000;  123 1174-1183
  • 10 Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time.  Brain. 2002;  125 2202-2212
  • 11 Trapp B D, Peterson J, Ransohoff R M, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis.  New Engl J Med. 1998;  338 278-285
  • 12 Davie C A, Barker G J, Webb S, Tofts P S, Thompson A J, Harding A E, McDonald W I, Miller D H. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss.  Brain. 1995;  118 1583-1592
  • 13 Losseff N A, Webb S L, O'Riordan J I, Page R, Wang L, Barker G J, Tofts P S, McDonald W I, Miller D H, Thompson A J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression.  Brain. 1996;  119 701-708
  • 14 Peterson J W, Bö L, Mörk S, Chang A, Trapp B D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions.  Ann Neurol. 2001;  50 389-400
  • 15 Bo L, Vedeler C A, Nyland H I, Trapp B D, Mork S J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients.  J Neuropathol Exp Neurol. 2003;  62 (7) 723-732
  • 16 Bo L, Vedeler C A, Nyland H, Trapp B D, Mork S J. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration.  Mult Scler. 2003;  9 (4) 323-331
  • 17 Bruck W, Kuhlmann T, Stadelmann C. Remyelination in multiple sclerosis.  J Neurol Sci. 2003;  206 (2) 181-185
  • 18 Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, Brück W. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions.  Ann Neurol. 2001;  49 793-796
  • 19 Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold D L, Matthews P M. Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability.  Brain. 2002;  125 (Pt 12) 2646-2657
  • 20 Kerschensteiner M, Gallmeier E, Behrens L, Leal V V, Misgeld T, Klinkert W EF, Kolbeck R, Hoppe E, Oropeza-Wekerle R-L, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation?.  J Exp Med. 1999;  189 865-870
  • 21 Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R, Lassmann H. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?.  Brain. 2002;  125 75-85
  • 22 Steinman L. Multiple sclerosis: a two-stage disease.  Nat Immunol. 2001;  2 (9) 762-764
  • 23 Ota K, Matsui M, Milford E L, Mackin G A, Weiner H L, Hafler D A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis.  Nature. 1990;  346 (6280) 183-187
  • 24 Pette M, Fujita K, Wilkinson D, Altmann D M, Trowsdale J, Giegerich G, Hinkkanen A, Epplen J T, Kappos L, Wekerle H. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors.  Proc Natl Acad Sci USA. 1990;  87 (20) 7968-7972
  • 25 Goebels N, Hofstetter H, Schmidt S, Brunner C, Wekerle H, Hohlfeld R. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence.  Brain. 2000;  123 Pt 3Ž 508-518
  • 26 Tuohy V K, Yu M, Weinstock-Guttman B, Kinkel R P. Diversity and plasticity of self recognition during the development of multiple sclerosis.  J Clin Invest. 1997;  99 (7) 1682-1690
  • 27 Sabatos C A, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng X X, Coyle A J, Strom T B, Freeman G J, Kuchroo V K. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance.  Nat Immunol. 2003;  4 (11) 1102-1110
  • 28 Khademi M, Illes Z, Gielen A W, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris R A, Hafler D A, Kuchroo V K, Olsson T, Piehl F, Wallstrom E. T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis.  J Immunol. 2004;  172 (11) 7169-7176
  • 29 Shevach E M. Regulatory T cells. Introduction.  Semin Immunol. 2004;  16 (2) 69-71
  • 30 Viglietta V, Baecher-Allan C, Weiner H L, Hafler D A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.  J Exp Med. 2004;  199 (7) 971-979
  • 31 Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T. Natural killer type 2 bias in remission of multiple sclerosis.  J Clin Invest. 2001;  107 (5) R23-R29
  • 32 Bayas A, Stazoilek M, Kruse N. et al .Altered regulatory function of plasmacytoid dendritic cells in MS. J Neurol 2004 251 Suppl. 3 III/43
  • 33 Kivisakk P, Mahad D J, Callahan M K, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis S M, Lassmann H, Ransohoff R M. Expression of CCR7 in multiple sclerosis: implications for CNS immunity.  Ann Neurol. 2004;  55 (5) 627-638
  • 34 Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction.  J Exp Med. 2000;  192 (3) 393-404
  • 35 Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R, Goebels N. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood.  Proc Natl Acad Sci USA. 2004;  101 (8) 2428-2433
  • 36 Tejada-Simon M V, Zang Y C, Hong J, Rivera V M, Zhang J Z. Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis.  Ann Neurol. 2003;  53 (2) 189-197
  • 37 Derfuss T, Gurkov R, Then B F, Goebels N, Hartmann M, Barz C, Wilske B, Autenrieth I, Wick M, Hohlfeld R, Meinl E. Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response.  Brain. 2001;  124 (Pt 7) 1325-1335
  • 38 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity.  Nat Immunol. 2001;  2 (8) 675-680
  • 39 Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C. Animal models.  Ann Neurol. 1994;  36 47-53
  • 40 Rivers T M, Sprunt D H, Berry G P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys.  J Exp Med. 1933;  58 39-53
  • 41 Cornet A, Liblau R. Experimentelle Autoimmunenzephalomyelitis. 2003: 80-100
  • 42 Ben-Nun A, Wekerle H, Cohen I R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis.  Eur J Immunol. 1981;  11 195-199
  • 43 Sundvall M, Jirholt J, Yang H T, Jansson L, Engstrom A, Pettersson U, Holmdahl R. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis.  Nat Genet. 1995;  10 (3) 313-317
  • 44 Kuchroo V K, Umetsu D T, DeKruyff R H, Freeman G J. The TIM gene family: emerging roles in immunity and disease.  Nat Rev Immunol. 2003;  3 (6) 454-462
  • 45 Storch M K, Stefferl A, Brehm U, Weissert R, Wallström E, Kerschensteiner M, Olsson T, Linington C, Lassmann H. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology.  Brain Pathol. 1998;  8 681-694
  • 46 Flügel A, Berkowicz T, Ritter T, Labeur M, Jenne D E, Li Z, Ellwart J W, Willem M, Lassmann H, Wekerle H. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis.  Immunity. 2001;  14 547-560
  • 47 t'Hart B A, van Meurs M, Brok H P, Massacesi L, Bauer J, Boon L, Bontrop R E, Laman J D. A new primate model for multiple sclerosis in the common marmoset.  Immunol Today. 2000;  21 (6) 290-297
  • 48 t'Hart B A, Vervoordeldonk M, Heeney J L, Tak P P. Gene therapy in nonhuman primate models of human autoimmune disease.  Gene Ther. 2003;  10 (10) 890-901
  • 49 Koh D R, Fung-Leung W P, Ho A, Gray D, Acha-Orbea H, Mak T W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/-mice.  Science. 1992;  256 (5060) 1210-1213
  • 50 Meyer R, Weissert R, Diem R, Storch M K, de Graaf K L, Kramer B, Bähr M. Acute neuronal apoptosis in a rat model of multiple sclerosis.  J Neurosci. 2001;  21 6214-6220
  • 51 Nitsch R, Pohl E E, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue.  J Neurosci. 2004;  24 (10) 2458-2464
  • 52 Kornek B, Storch M K, Bauer J, Djamshidian A, Weissert R, Wallstroem E, Stefferl A, Zimprich F, Olsson T, Linington C, Schmidbauer M, Lassmann H. Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis.  Brain. 2001;  124 1114-1124
  • 53 Craner M J, Kataoka Y, Lo A C, Black J A, Baker D, Waxman S G. Temporal course of upregulation of Na(v)1.8 in Purkinje neurons parallels the progression of clinical deficit in experimental allergic encephalomyelitis.  J Neuropathol Exp Neurol. 2003;  62 (9) 968-975
  • 54 Craner M J, Lo A C, Black J A, Waxman S G. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.  Brain. 2003;  126 (Pt 7) 1552-1561
  • 55 Linker R A, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka K V, Sendtner M, Gold R. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation.  Nature Med. 2002;  8 620-624
  • 56 Sättler M, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bähr M, Diem R. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004; Im Druck
  • 57 Bechtold D A, Kapoor R, Smith K J. Axonal protection using flecainide in experimental autoimmune encephalomyelitis.  Ann Neurol. 2004;  55 (5) 607-616
  • 58 MS-Therapie Konsensusgruppe . Immunmodulatorische Stufentherapie der Multiplen Sklerose.  Nervenarzt. 1999;  70 371-386
  • 59 Grauer O, Offenhausser M, Schmidt J, Toyka K V, Gold R. Glucocorticosteroid therapy in optic neuritis and multiple sclerosis. Evidence from clinical studies and practical recommendations.  Nervenarzt. 2001;  72 (8) 577-589
  • 60 Krauss S, Brand M D, Buttgereit F. Signaling takes a breath - new quantitative perspectives on bioenergetics and signal transduction.  Immunity. 2001;  15 (4) 497-502
  • 61 Gold R, Buttgereit F, Toyka K V. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders.  J Neuroimmunol. 2001;  117 (1 - 2) 1-8
  • 62 Schmidt J, Metselaar J M, Wauben M H, Toyka K V, Storm G, Gold R. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis.  Brain. 2003;  126 (Pt 8) 1895-1904
  • 63 Morrow S A, Stoian C A, Dmitrovic J, Chan S C, Metz L M. The bioavailability of IV methylprednisolone and oral prednisone in multiple sclerosis.  Neurology. 2004;  63 (6) 1079-1080
  • 64 Keegan M, Pineda A A, McClelland R L, Darby C H, Rodriguez M, Weinshenker B G. Plasma exchange for severe attacks of CNS demyelination: predictors of response.  Neurology. 2002;  58 143-146
  • 65 Ruprecht K, Klinker E, Dintelmann T, Rieckmann P, Gold R. Plasma exchange for severe optic neuritis: treatment of 10 patients.  Neurology. 2004;  63 (6) 1081-1083
  • 66 Hartung H P, Kieseier B C. Targets for the therapeutic action of interferon-beta in multiple sclerosis.  Ann Neurol. 1996;  40 (6) 825-826
  • 67 Bayas A, Rieckmann P. Managing the adverse effects of interferon-beta therapy in multiple sclerosis.  Drug Saf. 2000;  22 (2) 149-159
  • 68 Filippini G, Munari L, Incorvaia B, Ebers G C, Polman C, D'Amico R, Rice G P. Interferons in relapsing remitting multiple sclerosis: a systematic review.  Lancet. 2003;  361 (9357) 545-552
  • 69 Brex P A, Ciccarelli O, O'Riordan J I, Sailer M, Thompson A J, Miller D H. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis.  New Engl J Med. 2002;  346 158-164
  • 70 McDonald W I, Compston A, Edan G, Goodkin D, Hartung H P, Lublin F D, McFarland H F, Paty D W, Polman C H, Reingold S C, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker B Y, Wolinsky J S. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis.  Ann Neurol. 2001;  50 (1) 121-127
  • 71 Beck R W, Chandler D L, Cole S R, Simon J H, Jacobs L D, Kinkel R P, Selhorst J B, Rose J W, Cooper J A, Rice G, Murray T J, Sandrock A W. Interferon beta-1a for early multiple sclerosis: CHAMPS trial subgroup analyses.  Ann Neurol. 2002;  51 (4) 481-490
  • 72 PRISMS-4 . Long-term efficacy of interferon-beta-1a in relapsing MS.  Neurology. 2001;  56 (12) 1628-1636
  • 73 Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, Montanari E, Zaffaroni M. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN).  Lancet. 2002;  359 (9316) 1453-1460
  • 74 Panitch H, Goodin D S, Francis G, Chang P, Coyle P K, O'Connor P, Monaghan E, Li D, Weinshenker B. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial.  Neurology. 2002;  59 (10) 1496-1506
  • 75 Sorensen P S, Ross C, Clemmesen K M, Bendtzen K, Frederiksen J L, Jensen K, Kristensen O, Petersen T, Rasmussen S, Ravnborg M, Stenager E, Koch-Henriksen N. Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis.  Lancet. 2003;  362 (9391) 1184-1191
  • 76 Gold R, Heidenreich F, Kappos L. Immunotherapy of multiple sclerosis with glatiramer acetate mechanisms of action and results from therapeutic trials.  Akt Neurol. 2001;  29 345-351
  • 77 Weber M S, Starck M, Wagenpfeil S, Meinl E, Hohlfeld R, Farina C. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo.  Brain. 2004;  127 (Pt 6) 1370-1378
  • 78 Ziemssen T, Kumpfel T, Klinkert W E, Neuhaus O, Hohlfeld R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy.  Brain. 2002;  125 2381-2391
  • 79 Filippi M, Rovaris M, Rocca M A, Sormani M P, Wolinsky J S, Comi G. Glatiramer acetate reduces the proportion of new MS lesions evolving into „black holes”.  Neurology. 2001;  57 731-733
  • 80 Comi G, Filippi M, Wolinsky J S. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group.  Ann Neurol. 2001;  49 (3) 290-297
  • 81 Spina C A. Azathioprine as an immune modulating drug: clinical applications.  Clin Imm All. 1984;  4 415-446
  • 82 Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr H A, Wirtz S, Becker C, Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H, Galle P R, Ahmadian M R, Neurath M F. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes.  J Clin Invest. 2003;  111 (8) 1133-1145
  • 83 Kappos L, Patzold U, Dommasch D, Poser S, Haas J, Krauseneck P, Malin J P, Fierz W, Graffenried B U, Gugerli U S. Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis-results of the German multicenter study.  Ann Neurol. 1988;  23 (1) 56-63
  • 84 Yudkin P L, Ellison G W, Ghezzi A, Goodkin D E, Hughes R A, McPherson K, Mertin J, Milanese C. Overview of azathioprine treatment in multiple sclerosis.  Lancet. 1991;  338 (8774) 1051-1055
  • 85 Stangel M, Gold R. Use of IV immunoglobulins in neurology. Evidence-based consensus.  Nervenarzt. 2004;  75 (8) 801-816
  • 86 Lewanska M, Siger-Zajdel M, Selmaj K. No difference in efficacy of two different doses of intravenous immunoglobulins in MS: clinical and MRI assessment.  Eur J Neurol. 2002;  9 (6) 565-572
  • 87 Gonsette R, Demonty L. Mitoxantrone: a new immunosuppressive agent in multiple sclerosis. 1989: 161-164
  • 88 Weilbach F X, Chan A, Toyka K V, Gold R. The cardioprotector dexrazoxane augments therapeutic efficacy of mitoxantrone in experimental autoimmune encephalomyelitis.  Clin Exp Immunol. 2004;  135 (1) 49-55
  • 89 Hartung H P, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey S P, Krapf H, Zwingers T. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial.  Lancet. 2002;  360 (9350) 2018-2025
  • 90 Strotmann J M, Spindler M, Weilbach F X, Gold R, Ertl G, Voelker W. Myocardial function in patients with multiple sclerosis treated with low-dose mitoxantrone.  Am J Cardiol. 2002;  89 (10) 1222-1225
  • 91 Ghalie R G, Mauch E, Edan G, Hartung H P, Gonsette R E, Eisenmann S, Le Page E, Butine M D, De Goodkin D E. A study of therapy-related acute leukaemia after mitoxantrone therapy for multiple sclerosis.  Mult Scler. 2002;  8 (5) 441-445
  • 92 Smith D R, Balashov K E, Hafler D A, Khoury S J, Weiner H L. Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: increased interleukin-4 production and associated eosinophilia.  Ann Neurol. 1997;  42 313-318
  • 93 Pette M, Hartung H P, Toyka K V. Cyclophosphamide in therapy of chronic progressive multiple sclerosis. Critical analysis of current studies.  Nervenarzt. 1994;  65 (4) 271-274
  • 94 Miller D H, Khan O A, Sheremata W A, Blumhardt L D, Rice G P, Libonati M A, Willmer-Hulme A J, Dalton C M, Miszkiel K A, O'Connor P W. A controlled trial of natalizumab for relapsing multiple sclerosis.  N Engl J Med. 2003;  348 (1) 15-23
  • 95 Leussink V I, Zettl U K, Jander S, Pepinsky R B, Lobb R R, Stoll G, Toyka K V, Gold R. Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis.  Acta Neuropathol (Berl). 2002;  103 (2) 131-136
  • 96 Tubridy N, Behan P O, Capildeo R, Chaudhuri A, Forbes R, Hawkins C P, Hughes R A, Palace J, Sharrack B, Swingler R, Young C, Moseley I F, MacManus D G, Donoghue S, Miller D H. The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group.  Neurology. 1999;  53 (3) 466-472
  • 97 Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S, McCartin J, Wurfel J, Ohayon J, Waldmann T A, McFarland H F, Martin R. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta.  Proc Natl Acad Sci USA. 2004;  101 (23) 8705-8708
  • 98 Horuk R, Shurey S, Ng H P, May K, Bauman J G, Islam I, Ghannam A, Buckman B, Wei G P, Xu W, Liang M, Rosser M, Dunning L, Hesselgesser J, Snider R M, Morrissey M M, Perez H D, Green C. CCR1-specific non-peptide antagonist: efficacy in a rabbit allograft rejection model.  Immunol Lett. 2001;  76 (3) 193-201
  • 99 Elices M J. BX-471 Berlex.  Curr Opin Investig Drugs. 2002;  3 (6) 865-869
  • 100 Litjens N H, Rademaker M, Ravensbergen B, Rea D, van der Plas M J, Thio B, Walding A, Van Dissel J T, Nibbering P H. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses.  Eur J Immunol. 2004;  34 (2) 565-575
  • 101 Neuhaus O, Stuve O, Zamvil S S, Hartung H P. Are statins a treatment option for multiple sclerosis?.  Lancet Neurol. 2004;  3 (6) 369-371
  • 102 Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, Preiningerova J, Rizzo M, Singh I. Oral simvastatin treatment in relapsing-remitting multiple sclerosis.  Lancet. 2004;  363 (9421) 1607-1608
  • 103 Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials.  BioDrugs. 2002;  16 (3) 183-200
  • 104 Heinze T. et al . Symptomatische Therapie der Multiplen Sklerose.  Nervenarzt. 2004;  75 (Suppl. 1) 2-39
  • 105 Gold R, Toyka K V. Immuntherapie neurologischer Erkrankungen. Bremen: Uni-Med 2001:

Prof. Dr. med. Ralf Gold

Institut für Multiple Sklerose Forschung · Bereich Humanmedizin der Georg-August-Universität und Gemeinnützige Hertie-Stiftung

Waldweg 33

37073 Göttingen

Email: r.gold@med.uni-goettingen.de

    >