Horm Metab Res 2004; 36(5): 261-271
DOI: 10.1055/s-2004-814477
Review
© Georg Thieme Verlag Stuttgart · New York

The Role of the M6P/IGF-II Receptor in Cancer: Tumor Suppression or Garbage Disposal?

C.  D.  Scott1, 2 , S.  M.  Firth1, 2
  • 1Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065
  • 2University of Sydney, NSW 2006, Australia
Further Information

Publication History

Received 1 October 2003

Accepted after Revision 6 January 2004

Publication Date:
24 May 2004 (online)

Abstract

The mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR) is an intriguing protein with multiple ligands and multiple functions. Approximately 90 - 95 % of the receptor is located intracellularly, with 5 - 10 % being on the cell surface. It has long been known to play an essential intracellular role in the transport of newly-synthesized lysosomal enzymes from the trans-Golgi network (TGN) to the lysosomes. More recently, however, the loss of this receptor has been described in some tumour types, suggesting that it may play a role in tumour suppression. The focus has therefore shifted to elucidating the role played by the cell surface receptor and its interaction with its diverse ligands in tumour growth and progression. The list of ligands is continuously increasing and includes growth factors such as IGF-II and transforming growth factor β (TGFβ). This review will address the question of whether the M6P/IGF-IIR plays a direct role in tumour suppression or merely plays an indirect role as a transporter for ligands designated for degradation in the lysosomes.

References

  • 1 Dahms N M, Hancock M K. P-type lectins.  Biochim Biophys Acta. 2002;  1572 317-340
  • 2 Ghosh P, Dahms N M, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale.  Nature Rev Mol Cell Biol. 2003;  4 202-212
  • 3 Devi G R, Byrd J C, Slentz D H, Macdonald R G. An insulin-like growth factor II (IGF-II) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF-II/mannose 6-phosphate receptor.  Mol Endocrinol. 1998;  12 1661-1672
  • 4 Linnell J, Groeger G, Hassan A B. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor: the effects of domain 13 and pH.  J Biol Chem. 2001;  276 23 986-23 991
  • 5 Grimme S, Honing S, von Figura K, Schmidt B. Endocytosis of insulin-like growth factor II by a mini-receptor based on repeat 11 of the mannose 6-phosphate/insulin-like growth factor II receptor.  J Biol Chem. 2000;  275 33 697-33 703
  • 6 Clairmont K B, Czech M P. Extracellular release as the major degradative pathway of the insulin-like growth factor II/mannose 6-phosphate receptor.  J Biol Chem. 1991;  266 12 131-12 134
  • 7 Tahiri K, Cam L, Desbuquois B, Chauvet G. Processing of the insulin-like growth factor-II-mannose 6-phosphate receptor in isolated liver subcellular fractions.  Biochem Cell Biol. 2001;  79 469-477
  • 8 Confort C, Rochefort H, Vignon F. IGFs stimulate the release of α1-antichymotrypsin and soluble IGF-II/M6P receptor from MCF7 breast cancer cells.  Endocrinology. 1995;  136 3759-3766
  • 9 O'Gorman D B, Weiss J, Hettiaratchi A, Firth S M, Scott C D. Insulin-like growth factor-II/mannose 6-phosphate receptor overexpression reduces growth of choriocarcinoma cells in vitro and in vivo.  Endocrinology. 2002;  143 4287-4294
  • 10 Xu Y, Papageorgiou A, Polychronakos C. Developmental regulation of the soluble form of insulin-like growth factor-ii mannose 6-phosphate receptor in human serum and amniotic fluid.  J Clin Endocrinol Metab. 1998;  83 437-442
  • 11 Costello M C, Baxter R C, Scott C D. Regulation of soluble insulin-like growth factor II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked immunosorbent assay.  J Clin Endocrinol Metab. 1999;  84 611-617
  • 12 Scott C, Weiss J. Soluble insulin-like growth factor II/mannose 6-phosphate receptor inhibits DNA synthesis in insulin-like growth factor II sensitive cells.  J Cell Physiol. 2000;  182 62-68
  • 13 Zaina S, Squire S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms.  J Biol Chem. 1998;  273 28 610-28 616
  • 14 De Souza A T, Hankins G R, Washington M K, Orton T C, Jirtle R L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.  Nat Genet. 1995;  11 447-449
  • 15 Oka Y, Waterland R A, Killian J K, Nolan C M, Jang H S, Tohara K, Sakaguchi S, Yao T, Iwashita A, Yata Y, Takahara T, Sato S, Suzuki K, Masuda T, Jirtle R L. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.  Hepatology. 2002;  35 1153-1163
  • 16 Yamada T, De Souza A T, Finkelstein S, Jirtle R L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis.  Proc Natl Acad Sci USA. 1997;  94 10 351-10 355
  • 17 Piao Z, Choi Y, Park C, Lee W J, Park J H, Kim H. Deletion of the M6P/IGF2r gene in primary hepatocellular carcinoma.  Cancer Lett. 1997;  120 39-43
  • 18 Chappell S A, Walsh T, Walker R A, Shaw J A. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas.  Br J Cancer. 1997;  76 1558-1561
  • 19 Hankins G R, De Souza A T, Bentley R C, Patel M R, Marks J R, Iglehart J D, Jirtle R L. M6P/IGF2 receptor: A candidate breast-tumor suppressor gene.  Oncogene. 1996;  12 2003-2009
  • 20 Leboulleux S, Gaston V, Boulle N, Le Bouc Y, Gicquel C. Loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor 2 receptor locus: a frequent but late event in adrenocortical tumorigenesis.  Eur J Endocrinol. 2001;  144 163-168
  • 21 Kong F M, Anscher M S, Washington M K, Killian J K, Jirtle R L. M6P/IGF2R is mutated in squamous cell carcinoma of the lung.  Oncogene. 2000;  19 1572-1578
  • 22 Jamieson T A, Brizel D M, Killian J K, Oka Y, Jang H S, Fu X, Clough R W, Vollmer R T, Anscher M S, Jirtle R L. M6P/IGF2R loss of heterozygosity in head and neck cancer associated with poor patient prognosis.  BMC Cancer. 2003;  3 4
  • 23 De Souza A T, Hankins G R, Washington M K, Fine R L, Orton T C, Jirtle R L. Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors.  Oncogene. 1995;  10 1725-1729
  • 24 Wada I, Kanada H, Nomura K, Kato Y, Machinami R, Kitagawa T. Failure to detect genetic alteration of the mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) gene in hepatocellular carcinomas in Japan.  Hepatology. 1999;  29 1718-1721
  • 25 Sue S R, Chari R S, Kong F M, Mills J J, Fine R L, Jirtle R L, Meyers W C. Transforming growth factor-beta receptors and mannose 6-phosphate/insulin-like growth factor-II receptor expression in human hepatocellular carcinoma.  Ann Surg. 1995;  222 171-178
  • 26 Rey J M, Theillet C, Brouillet J P, Rochefort H. Stable amino-acid sequence of the mannose-6-phosphate/insulin-like growth-factor-II receptor in ovarian carcinomas with loss of heterozygosity and in breast-cancer cell lines.  Int J Cancer. 2000;  85 466-473
  • 27 Lemamy G J, Roger P, Mani J C, Robert M, Rochefort H, Brouillet J P. High-affinity antibodies from hen's-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): characterization and potential use in clinical cancer studies.  Int J Cancer. 1999;  80 896-902
  • 28 Berthe M L, Esslimani Sahla M, Roger P, Gleizes M, Lemamy G J, Brouillet J P, Rochefort H. Mannose-6-phosphate/insulin-like growth factor-II receptor expression levels during the progression from normal human mammary tissue to invasive breast carcinomas.  Eur J Cancer. 2003;  39 635-642
  • 29 Byrd J C, Devi G R, de Souza A T, Jirtle R L, MacDonald R G. Disruption of ligand binding to the insulin-like growth factor II/mannose 6-phosphate receptor by cancer-associated missense mutations.  J Biol Chem. 1999;  274 24 408-24 416
  • 30 Devi G R, de Souza A T, Byrd J C, Jirtle R L, MacDonald R G. Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers.  Cancer Res. 1999;  59 4314-4319
  • 31 Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability.  Cancer Res. 2002;  62 2447-2454
  • 32 Souza R F, Appel R, Yin J, Wang S, Smolinski K N, Abraham J M, Zou T T, Shi Y Q, Lei J, Cottrell J, Cymes K, Biden K, Simms L, Leggett B, Lynch P M, Frazier M, Powell S M, Harpaz N, Sugimura H, Young J, Meltzer S J. Microsatellite instability in the IGF-II receptor gene in gastrointestinal tumours.  Nat Genet. 1996;  14 255-257
  • 33 Ouyang H, Shiwaku H O, Hagiwara H, Miura K, Abe T, Kato Y, Ohtani H, Shiiba K, Souza R F, Meltzer S J, Horii A. The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum.  Cancer Res. 1997;  57 1851-1854
  • 34 Barlow D P, Stoger R, Herrmann B G, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus.  Nature. 1991;  349 84-87
  • 35 Lyle R, Watanabe D, te Vruchte D D, Lerchner W, Smrzka O W, Wutz A, Schageman J, Hahner L, Davies C, Barlow D P. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1.  Nat Genet. 2000;  25 19-21
  • 36 Kalscheuer V M, Mariman E C, Schepens M T, Rehder H, Ropers H H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans.  Nat Genet. 1993;  5 74-78
  • 37 Ogawa O, McNoe L A, Eccles M R, Morison I M, Reeve A E. Human insulin-like growth factor type I and type II receptors are not imprinted.  Hum Mol Genet. 1993;  2 2163-2165
  • 38 Oudejans C B, Westerman B, Wouters D, Gooyer S, Leegwater P A, van Wijk I J, Sleutels F. Allelic IGF2R repression does not correlate with expression of antisense RNA in human extraembryonic tissues.  Genomics. 2001;  73 331-337
  • 39 Xu Y Q, Goodyer C G, Deal C, Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene.  Biochem Biophys Res Commun. 1993;  197 747-754
  • 40 Xu Y Q, Grundy P, Polychronakos C. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor.  Oncogene. 1997;  14 1041-1046
  • 41 Riesewijk A M, Xu Y Q, Schepens M T, Mariman E M, Polychronakos C, Ropers H H, Kalscheuer V M. Absence of an obvious molecular imprinting mechanism in a human fetus with monoallelic IGF2R expression.  Biochem Biophys Res Commun. 1998;  245 272-277
  • 42 Oates A J, Schumaker L M, Jenkins S B, Pearce A A, DaCosta S A, Arun B, Ellis M J. The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene.  Br Cancer Res Treat. 1998;  47 269-281
  • 43 Hassan A B. Keys to the hidden treasures of the mannose 6-phosphate/insulin-like growth factor 2 receptor.  Am J Pathol. 2003;  162 3-6
  • 44 DaCosta S A, Schumaker L M, Ellis M J. Mannose 6-phosphate/insulin-like growth factor 2 receptor, a bona fide tumor suppressor gene or just a promising candidate?.  J Mammary Gland Biol Neoplasia. 2000;  5 85-94
  • 45 Souza R F, Wang S N, Thakar M, Smolinski K N, Yin J, Zou T T, Kong D H, Abraham J M, Toretsky J A, Meltzer S J. Expression of the wild-type insulin-like growth factor II receptor gene suppresses growth and causes death in colorectal carcinoma cells.  Oncogene. 1999;  18 4063-4068
  • 46 Lee J, Weiss J, Martin J, Scott C. Increased expression of the mannose-6 phosphate/insulin-like growth factor-II receptor in breast cancer cells alters tumorigenic properties in vitro and in vivo.  Int J Cancer. 2003;  107 564-570
  • 47 Schaffer B S, Lin M F, Byrd J C, Park J H, MacDonald R G. Opposing roles for the insulin-like growth factor (IGF)-II and mannose 6-phosphate (Man-6-P) binding activities of the IGF-II/Man-6-P receptor in the growth of prostate cancer cells.  Endocrinology. 2003;  144 955-966
  • 48 O'Gorman D B, Costello M, Weiss J, Firth S M, Scott C D. Decreased insulin-like growth factor-II/mannose 6-phosphate receptor expression enhances tumorigenicity in JEG-3 cells.  Cancer Res. 1999;  59 5692-5694
  • 49 Bartucci M, Morelli C, Mauro L, Ando S, Surmacz E. Differential IGF-I receptor signaling and function in ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells.  Cancer Res. 2001;  61 6747-6754
  • 50 Chen Z, Ge Y, Landman N, Kang J X. Decreased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells.  BMC Cancer. 2002;  2 18
  • 51 Minniti C P, Luan D, O'Grady C, Rosenfeld R G, Oh Y, Helman L J. Insulin-like growth factor II overexpression in myoblasts induces phenotypic changes typical of the malignant phenotype.  Cell Growth Differ. 1995;  6 263-269
  • 52 Rainier S, Johnson L A, Dobry C J, Ping A J, Grundy P E, Feinberg A P. Relaxation of imprinted genes in human cancer.  Nature. 1993;  362 747-749
  • 53 Ogawa O, Eccles M R, Szeto J, McNoe L A, Yun K, Maw M A, Smith P J, Reeve A E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour.  Nature. 1993;  362 749-751
  • 54 Pedone P V, Tirabosco R, Cavazzana A O, Ungaro P, Basso G, Luksch R, Carli M, Bruni C B, Frunzio R, Riccio A. Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors.  Hum Mol Genet. 1994;  3 1117-1121
  • 55 Weksberg R, Shen D R, Fei Y L, Song Q L, Squire J. Disruption of Insulin-Like growth factor 2 imprinting in Beckwith-Wiedemann syndrome.  Nat Genet. 1993;  5 143-150
  • 56 Christofori G, Naik P, Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis.  Nature. 1994;  369 414-418
  • 57 Chen H J, Remmler J, Delaney J C, Messner D J, Lobel P. Mutational analysis of the cation-independent mannose 6-phosphate/ insulin-like growth factor-II receptor: a consensus casein kinase-II site followed by 2 leucines near the carboxyl terminus is important for intracellular targeting of lysosomal enzymes.  J Biol Chem. 1993;  268 22 338-22 346
  • 58 Okamoto T, Katuda T, Murayama Y, Ui M, Ogata E, Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor.  Cell. 1990;  62 709-717
  • 59 Okamoto T, Nishimoto I, Murayama Y, Ohkuni Y, Ogata E. Insulin-like growth factor-II/mannose 6-phosphate receptor is incapable of activating GTP-binding proteins in response to mannose 6-phosphate, but capable in response to insulin-like growth factor-II.  Biochem Biophys Res Commun. 1990;  168 1201-1210
  • 60 Korner C, Nurnberg B, Uhde M, Braulke T. Mannose 6-P/IGF-II receptor fails to interact with G-proteins-analysis of mutant cytoplasmic receptor domains.  J Biol Chem. 1995;  270 287-295
  • 61 Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A. In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A.  Oncogene. 2002;  21 8240-8250
  • 62 Scalia P, Heart E, Comai L, Vigneri R, Sung C K. Regulation of the Akt/glycogen synthase kinase-3 axis by insulin-like growth factor-II via activation of the human insulin receptor isoform-A.  J Cell Biochem. 2001;  82 610-618
  • 63 Schirmacher P, Held W A, Yang D, Chisari F V, Rustum Y, Rogler C E. Reactivation of Insulin-like growth factor II during hepatocarcinogenesis in transgenic mice suggests a role in malignant growth.  Cancer Res. 1992;  52 2549-2556
  • 64 Rotsch M, Maasberg M, Erbil C, Jaques G, Worsch U, Havemann K. Characterization of insulin-like growth factor I receptors and growth effects in human lung cancer cell lines.  J Cancer Res Clin Oncol. 1992;  118 502-508
  • 65 Kalli K R, Falowo O I, Bale L K, Zschunke M A, Roche P C, Conover C A. Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling.  Endocrinology. 2002;  143 3259-3267
  • 66 Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine I D, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells.  Mol Cell Biol. 1999;  19 3278-3288
  • 67 Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R, Pezzino V, Belfiore A. A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer.  J Clin Endocrinol Metab. 2002;  87 245-254
  • 68 Morrione A, Valentinis B, Xu S Q, Yumet G, Louvi A, Efstratiadis A, Baserga R. Insulin-like growth factor II stimulates cell proliferation through the insulin receptor.  Proc Natl Acad Sci USA. 1997;  94 3777-3782
  • 69 LeRoith D, Roberts C T Jr. The insulin-like growth factor system and cancer.  Cancer Lett. 2003;  195 127-137
  • 70 Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved.  J Biol Chem. 2002;  277 39 684-39 695
  • 71 Lau M MH, Stewart C EH, Liu Z Y, Bhatt H, Rotwein P, Stewart C L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality.  Genes Dev. 1994;  8 2953-2963
  • 72 Wylie A A, Pulford D J, McVie-Wylie A J, Waterland R A, Evans H K, Chen Y T, Nolan C M, Orton T C, Jirtle R L. Tissue-specific inactivation of murine M6P/IGF2R.  Am J Pathol. 2003;  162 321-328
  • 73 Ludwig T, Eggenschwiler J, Fisher P, D'Ercole A J, Davenport M L, Efstratiadis A. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds.  Dev Biol. 1996;  177 517-535
  • 74 Moses A C, Nissley S P, Short P A, Rechler M M, White R M, Knight A B, Higa O Z. Increased levels of multiplication-stimulating activity, an insulin-like growth factor, in fetal rat serum.  Proc Natl Acad Sci USA. 1980;  77 3649-3653
  • 75 Lund P K, Moats-Staats B M, Hynes M A, Simmons J G, Jansen M, D'Ercole A J, van Wyk J J. Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissues.  J Biol Chem. 1986;  261 14 539-14 544
  • 76 Wang S, Souza R F, Kong D, Yin J, Smolinski K N, Zou T T, Frank T, Young J, Flanders K C, Sugimura H, Abraham J M, Meltzer S J. Deficient transforming growth factor-beta1 activation and excessive IGFII expression in IGFII receptor-mutant tumors.  Cancer Res. 1997;  57 2543-2546
  • 77 Osipio C, Dorman S, Frankfater A. Loss of insulin-like growth factor II receptor expression promotes growth in cancer by increasing intracellular signaling from both IGF-I and insulin receptors.  Exp Cell Res. 2001;  264 388-396
  • 78 Butt A J, Firth S M, Baxter R C. The IGF axis and programmed cell death.  Immunol Cell Biol. 1999;  77 256-262
  • 79 Moorehead R A, Fata J E, Johnson M B, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice.  Cell Death Differ. 2001;  8 16-29
  • 80 Liu X D, Turbyville T, Fritz A, Whitesell L. Inhibition of insulin-like growth factor I receptor expression in neuroblastoma cells induces the regression of established tumors in mice.  Cancer Res. 1998;  58 5432-5438
  • 81 Navarro M, Baserga R. Limited redundancy of survival signals from the type 1 insulin-like growth factor receptor.  Endocrinology. 2001;  142 1073-1081
  • 82 Godar S, Horejsi V, Weidle U H, Binder B R, Hansmann C, Stockinger H. M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-beta1.  Eur J Immunol. 1999;  29 1004-1013
  • 83 Rochefort H. Cathepsin D in breast cancer - ia tissue marker associated with metastasis.  Eur J Cancer. 1992;  28A 1780-1783
  • 84 Schultz D C, Bazel S, Wright L M, Tucker S, Lange M K, Tachovsky T, Longo S, Niedbala S, Alhadeff J A. Western blotting and enzymatic activity analysis of Cathepsin-D in breast tissue and sera of patients with breast cancer and benign breast disease and of normal controls.  Cancer Res. 1994;  54 48-54
  • 85 Kute T E, Shao Z M, Sugg N K, Long R T, Russell G B, Case L D. Cathepsin-D as a prognostic indicator for node-negative breast cancer patients using both immunoassays and enzymatic assays.  Cancer Res. 1992;  52 5198-5203
  • 86 Garcia M, Derocq D, Pujol P, Rochefort H. Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency.  Oncogene. 1990;  5 1809-1814
  • 87 Vetvicka V, Vetvickova J, Fusek M. Effect of human procathepsin D on proliferation of human cell lines.  Cancer Lett. 1994;  79 131-135
  • 88 Vetvicka V, Vetvickova J, Hilgert I, Voburka Z, Fusek M. Analysis of the interaction of procathepsin D activation peptide with breast cancer cells.  Int J Cancer. 1997;  73 403-409
  • 89 de Leon D D, Issa N, Nainani S, Asmerom Y. Reversal of cathepsin D routing modulation in MCF-7 breast cancer cells expressing antisense insulin-like growth factor II (IGF-II).  Horm Metab Res. 1999;  31 142-147
  • 90 de Leon D D, Terry C, Asmerom Y, Nissley P. Insulin-like growth factor II modulates the routing of cathepsin D in MCF-7 breast cancer cells.  Endocrinology. 1996;  137 1851-1859
  • 91 Laurent-Matha V, Farnoud M R, Lucas A, Rougeot C, Garcia M, Rochefort H. Endocytosis of pro-cathepsin D into breast cancer cells is mostly independent of mannose-6-phosphate receptors.  J Cell Sci. 1998;  111 2539-2549
  • 92 Glondu M, Coopman P, Laurent-Matha V, Garcia M, Rochefort H, Liaudet-Coopman E. A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells.  Oncogene. 2001;  20 6920-6929
  • 93 Yang Q, Sakurai T, Kakudo K. Retinoid, retinoic acid receptor beta and breast cancer.  Br Cancer Res Treat. 2002;  76 167-173
  • 94 Verma A K. Retinoids in chemoprevention of cancer.  J Biol Regul Homeost Agents. 2003;  17 92-97
  • 95 McKenna N J, O'Malley B W. Combinatorial control of gene expression by nuclear receptors and coregulators.  Cell. 2002;  108 465-474
  • 96 Chiba H, Clifford J, Metzger D, Chambon P. Specific and redundant functions of retinoid X receptor/retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells.  J Cell Biol. 1997;  139 735-747
  • 97 Kang J X, Li Y, Leaf A. Mannose-6-phosphate/insulin-like growth factor-II receptor is a receptor for retinoic acid.  Proc Natl Acad Sci USA. 1997;  94 13 671-13 676
  • 98 Kang J X, Bell J, Beard R L, Chandraratna R A. Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids.  Cell Growth Differ. 1999;  10 591-600
  • 99 Darmon A J, Bleakley R C. Proteases and cell-mediated cytotoxicity.  Crit Rev Immunol. 1998;  18 255-273
  • 100 Motyka B, Korbutt G, Pinkoski M J, Heibein J A, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes C FB, Gauldie J, Bleackley R C. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis.  Cell. 2000;  103 491-500
  • 101 Trapani J A, Sutton V R, Thia K Y, Li Y Q, Froelich C J, Jans D A, Sandrin M S, Browne K A. A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death.  J Cell Biol. 2003;  160 223-233
  • 102 Nishikawa A, Gregory W, Frenz J, Cacia J, Kornfeld S. The phosphorylation of bovine DNase I Asn-linked oligosaccharides is dependent on specific lysine and arginine residues.  J Biol Chem. 1997;  272 19 408-19 412
  • 103 Blanchard F, Duplomb L, Raher S, Vusio P, Hoflack B, Jacques Y, Godard A. Mannose 6-phosphate/insulin-like growth factor II receptor mediates internalization and degradation of leukemia inhibitory factor but not signal transduction.  J Biol Chem. 1999;  274 24 685-24 693
  • 104 Playford M P, Bicknell D, Bodmer W F, Macaulay V M. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin.  Proc Natl Acad Sci USA . 2000;  97 12 103-12 108
  • 105 Kabir-Salmani M, Shiokawa S, Akimoto Y, Sakai K, Nagamatsu S, Nakamura Y, Lotfi A, Kawakami H, Iwashita M. AlphaVbeta3integrin signaling pathway is involved in insulin-like growth factor I-stimulated human extravillous trophoblast cell migration.  Endocrinology. 2003;  144 1620-1630
  • 106 Brooks P C, Klemke R L, Schon S, Lewis J M, Schwartz M A, Cheresh D A. Insulin-like growth factor receptor cooperates with integrin alpha v beta 5 to promote tumor cell dissemination in vivo.  J Clin Invest. 1997;  99 1390-1398
  • 107 Andre F, Rigot V, Thimonier J, Montixi C, Parat F, Pommier G, Marvaldi J, Luis J. Integrins and E-cadherin cooperate with IGF-I to induce migration of epithelial colonic cells.  Int J Cancer. 1999;  83 497-505
  • 108 Minniti C P, Kohn E C, Grubb J H, Sly W S, Oh Y, Muller H L, Rosenfeld R G, Helman L J. The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells.  J Biol Chem. 1992;  267 9000-9004
  • 109 Giannelli G, Fransvea E, Marinosci F, Bergamini C, Colucci S, Schiraldi O, Antonaci S. Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin.  Am J Pathol. 2002;  161 183-193
  • 110 Festuccia C, Bologna M, Gravina G L, Guerra F, Angelucci A, Villanova I, Millimaggi D, Teti A. Osteoblast conditioned media contain TGF-beta1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components.  Int J Cancer. 1999;  81 395-403
  • 111 Hasina R, Matsumoto K, Matsumoto-Taniura N, Kato I, Sakuda M, Nakamura T. Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line.  Br J Cancer. 1999;  80 1708-1717
  • 112 Mooradian D L, McCarthy J B, Komanduri K V, Furcht L T. Effects of transforming growth factor-beta 1 on human pulmonary adenocarcinoma cell adhesion, motility, and invasion in vitro.  J Natl Cancer Inst. 1992;  84 523-527
  • 113 Nakata D, Hamada J, Ba Y, Matsushita K, Shibata T, Hosokawa M, Moriuchi T. Enhancement of tumorigenic, metastatic and in vitro invasive capacity of rat mammary tumor cells by transforming growth factor-beta.  Cancer Lett. 2002;  175 95-106
  • 114 Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M. Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via up-regulation of alpha(V)beta(3) integrin expression.  Biochem Biophys Res Commun. 2000;  268 607-611
  • 115 Pilkington M F, Sims S M, Dixon S J. Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment.  J Bone Miner Res. 2001;  16 1237-1247
  • 116 Santibanez J F, Frontelo P, Iglesias M, Martinez J, Quintanilla M. Urokinase expression and binding activity associated with the transforming growth factor beta1-induced migratory and invasive phenotype of mouse epidermal keratinocytes.  J Cell Biochem. 1999;  74 61-73
  • 117 Stahl A, Mueller B M. Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro.  Cancer Res. 1994;  54 3066-3071
  • 118 Hebert C A, Baker J B. Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: colocalization of cell surface urokinase with vinculin.  J Cell Biol. 1988;  106 1241-1247
  • 119 Pollanen J, Hedman K, Nielsen L S, Dano K, Vaheri A. Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts.  Journal of Cell Biology. 1988;  106 87-95
  • 120 Yebra M, Parry G C, Stromblad S, Mackman N, Rosenberg S, Mueller B M, Cheresh D A. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration.  J Biol Chem. 1996;  271 29 393-29 399
  • 121 Chapman H A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration.  Curr Opin Cell Biol. 1997;  9 714-724
  • 122 van der Pluijm G, Sijmons B, Vloedgraven H, van der Bent C, Drijfhout J W, Verheijen J, Quax P, Karperien M, Papapoulos S, Lowik C. Urokinase-receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo.  Am J Pathol. 2001;  159 971-982
  • 123 Busso N, Masur S K, Lazega D, Waxman S, Ossowski L. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells.  J Cell Biol. 1994;  126 259-270
  • 124 Duffy M J. Proteases as prognostic markers in cancer.  Clin Cancer Res. 1996;  2 613-618
  • 125 Foekens J A, Peters H A, Look M P, Portengen H, Schmitt M, Kramer M D, Brunner N, Janicke F, Meijer-van G elder, Henzen-Logmans S C, van Putten W L, Klijn J G. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients.  Cancer Res. 2000;  60 636-643
  • 126 Kaneko T, Konno H, Baba M, Tanaka T, Nakamura S. Urokinase-type plasminogen activator expression correlates with tumor angiogenesis and poor outcome in gastric cancer.  Cancer Sci. 2003;  94 43-49
  • 127 Duffy M J, Duggan C, Maguire T, Mulcahy K, Elvin P, McDermott E, Fennelly J J, O'Higgins N. Urokinase plasminogen activator as a predictor of aggressive disease in breast cancer.  Enzyme Protein. 1996;  49 85-93
  • 128 Qian F, Bajkowski A S, Steiner D F, Chan S J, Frankfater A. Expression of five cathepsins in murine melanomas of varying metastatic potential and normal tissues.  Cancer Res. 1989;  49 4870-4875
  • 129 Ledakis P, Tester W T, Rosenberg N, Romero-Fischmann D, Daskal I, Lah T T. Cathepsins D, B, and L in malignant human lung tissue.  Clin Cancer Res. 1996;  2 561-568
  • 130 Dahms N M, Lobel P, Breitmeyer J, Chirgwin J M, Kornfeld S. 46kd mannose 6-phosphate receptor: Cloning, expression, and homology to the 215kd mannose 6-phosphate receptor.  Cell. 1987;  50 181-192
  • 131 Jin M, Sahagian G G Jr, Snider M D. Transport of surface mannose 6-phosphate receptor to the Golgi complex in cultured human cells.  J Biol Chem. 1989;  264 7675-7680
  • 132 Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor-II receptors.  Ann Rev Biochem. 1992;  61 307-330
  • 133 Kasper D, Dittmer F, von Figura K, Pohlmann R. Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes.  J Cell Biol. 1996;  134 615-623
  • 134 Faulhaber J, Fensom A, Hasilik A. Abnormal lysosomal sorting with an enhanced secretion of cathepsin D precursor molecules bearing monoester phosphate groups.  Eur J Cell Biol. 1998;  77 134-141
  • 135 Dittmer F, Hafner A, Ulbrich E J, Moritz J D, Schmidt P, Schmahl W, Pohlmann R, Figura K V. I-cell disease-like phenotype in mice deficient in mannose 6-phosphate receptors.  Transgenic Res. 1998;  7 473-483
  • 136 Sohar I, Sleat D, Gong Liu C, Ludwig T, Lobel P. Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice.  Biochem J. 1998;  330 903-908
  • 137 Ludwig T, Munierlehmann H, Bauer U, Hollinshead M, Ovitt C, Lobel P, Hoflack B. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.  EMBO J. 1994;  13 3430-3437
  • 138 Wick D A, Seetharam B, Dahms N M. Biosynthesis and secretion of the mannose 6-phosphate receptor and its ligands in polarized Caco-2 cells.  Am J Physiol. 1999;  277 G506-514
  • 139 O'Brien D A, Gabel C A, Eddy E M. Mouse Sertoli cells secrete mannose 6-phosphate containing glycoproteins that are endocytosed by spermatogenic cells.  Biol Reprod. 1993;  49 1055-1065
  • 140 Szpaderska A M, Frankfater A. An intracellular form of cathepsin B contributes to invasiveness in cancer.  Cancer Res. 2001;  61 3493-3500
  • 141 Duffy M J. The role of proteolytic enzymes in cancer invasion and metastasis.  Clin Exp Metastasis. 1992;  10 145-155
  • 142 Yan S, Sameni M, Sloane B F. Cathepsin B and human tumor progression.  Biol Chem. 1998;  379 113-123
  • 143 Mignatti P, Rifkin D B. Biology and biochemistry of proteinases in tumor invasion.  Physiol Rev. 1993;  73 161-195
  • 144 Kobayashi H, Ohi H, Sugimura M, Shinohara H, Fujii T, Terao T. Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin-B.  Cancer Res. 1992;  52 3610-3614
  • 145 Rochefort H. Cathepsin D in breast cancer.  Breast Cancer Res Treat. 1990;  16 3-13
  • 146 Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Gunzler W A, Janicke F, Graeff H. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA).  J Biol Chem. 1991;  266 5147-5152
  • 147 Andreasen P A, Kjoller L, Christensen L, Duffy M J. The urokinase-type plasminogen activator system in cancer metastasis: a review.  Int J Cancer. 1997;  72 1-22
  • 148 Fazioli F, Blasi F. Urokinase-type plasminogen activator and its receptor: new targets for anti-metastatic therapy?.  Trends Pharmacol Sci. 1994;  15 25-29
  • 149 Plebani M, Herszenyi L, Cardin R, Roveroni G, Carraro P, Paoli M D, Rugge M, Grigioni W F, Nitti D, Naccarato R, Farinati F. Cysteine and serine proteases in gastric cancer.  Cancer. 1995;  76 367-375
  • 150 Ranson M, Andronicos N M, O'Mullane M J, Baker M S. Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins.  Br J Cancer. 1998;  77 1586-1597
  • 151 Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, Schmitt M. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis.  Int J Oncol. 1998;  13 893-906
  • 152 Duffy M J. Plasminogen activators and cancer.  Blood Coagul Fibrinolysis. 1990;  1 681-687
  • 153 Mohanam S, Chintala S K, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan Z L, Sawaya R, Rao J S. In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor.  Oncogene. 1997;  14 1351-1359
  • 154 Leksa V, Godar S, Cebecauer M, Hilgert I, Breuss J, Weidle U H, Horejsi V, Binder B R, Stockinger H. The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration.  J Biol Chem. 2002;  277 40 575-40 582
  • 155 Kreiling J L, Byrd J C, Deisz R J, Mizukami I F, Todd R F 3rd, MacDonald R G. Binding of urokinase-type plasminogen activator receptor (uPAR) to the mannose 6-phosphate/insulin-like growth factor II receptor: contrasting interactions of full-length and soluble forms of uPAR.  J Biol Chem. 2003;  278 20 628-20 637
  • 156 Nykjaer A, Christensen E I, Vorum H, Hager H, Petersen C M, Roigaard H, Min H Y, Vilhardt F, Moller L B, Kornfeld S, Gliemann J. Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction.  Journal of Cell Biology. 1998;  141 815-828
  • 157 Farina A R, Coppa A, Tiberio A, Tacconelli A, Turco A, Colletta G, Gulino A, Mackay A R. Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity.  Int J Cancer. 1998;  75 721-730
  • 158 Capony F, Braulke T, Rougeot C, Roux S, Montcourrier P, Rochefort H. Specific mannose-6-phosphate receptor-independent sorting of pro-cathepsin D in breast cancer cells.  Exp Cell Res. 1994;  215 154-163
  • 159 Dupont J, Dunn S E, Barrett J C, LeRoith D. Microarray analysis and identification of novel molecules involved in insulin-like growth factor-1 receptor signaling and gene expression.  Recent Prog Horm Res. 2003;  58 325-342
  • 160 Bustin S A, Dorudi S, Phillips S M, Feakins R M, Jenkins P J. Local expression of insulin-like growth factor-I affects angiogenesis in colorectal cancer.  Tumour Biol. 2002;  23 130-138
  • 161 Oh J S, Kucab J E, Bushel P R, Martin K, Bennett L, Collins J, DiAugustine R P, Barrett J C, Afshari C A, Dunn S E. Insulin-like growth factor-1 inscribes a gene expression profile for angiogenic factors and cancer progression in breast epithelial cells.  Neoplasia. 2002;  4 204-217
  • 162 Reinmuth N, Liu W, Fan F, Jung Y D, Ahmad S A, Stoeltzing O, Bucana C D, Radinsky R, Ellis L M. Blockade of insulin-like growth factor I receptor function inhibits growth and angiogenesis of colon cancer.  Clin Cancer Res. 2002;  8 3259-3269
  • 163 Ritter M R, Dorrell M I, Edmonds J, Friedlander S F, Friedlander M. Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis.  Proc Natl Acad Sci USA. 2002;  99 7455-7460
  • 164 Samani A A, Brodt P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis.  Surg Oncol Clin N Am. 2001;  10 289-312, viii
  • 165 Shigematsu S, Yamauchi K, Nakajima K, Iijima S, Aizawa T, Hashizume K. IGF-1 regulates migration and angiogenesis of human endothelial cells.  Endocr J. 1999;  46 S59-62
  • 166 Lee S-J, Nathans D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors.  J Biol Chem. 1988;  263 3521-3527
  • 167 Volpert O, Jackson D, Bouck N, Linzer D. The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis.  Endocrinology. 1996;  137 3871-3876
  • 168 Blancher C, Harris A L. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target.  Cancer Metastasis Rev. 1998;  17 187-194
  • 169 O'Rourke J F, Dachs G U, Gleadle J M, Maxwell P H, Pugh C W, Stratford I J, Wood S M, Ratcliffe P J. Hypoxia response elements.  Oncology Res. 1997;  9 327-332
  • 170 Semenza G L. HIF-1 and tumor progression: pathophysiology and therapeutics.  Trends Mol Med. 2002;  8 S62-67
  • 171 Harris A L. Hypoxia: A key regulatory factor in tumour growth.  Nature Rev Cancer. 2002;  2 38-47
  • 172 Mazure N M, Brahimi-Horn M C, Pouyssegur J. Protein kinases and the hypoxia-inducible factor-1, two switches in angiogenesis.  Curr Pharm Des. 2003;  9 531-541
  • 173 Maxwell P H, Pugh C W, Ratcliffe P J. The pVHL-hIF-1 system. A key mediator of oxygen homeostasis.  Adv Exp Med Biol. 2001;  502 365-376
  • 174 Streeter E H, Crew J P. Angiogenesis, angiogenic factor expression and prognosis of bladder cancer.  Anticancer Res. 2001;  21 4355-4363
  • 175 Chavez J C, LaManna J C. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1.  J Neurosci. 2002;  22 8922-8931
  • 176 Fukuda R, Hirota K, Fan F, Jung Y D, Ellis L M, Semenza G L. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.  J Biol Chem. 2002;  277 38 205-38 211
  • 177 Akeno N, Robins J, Zhang M, Czyzyk-Krzeska M F, Clemens T L. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha.  Endocrinology. 2002;  143 420-425
  • 178 Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk A R, Ryan H E, Johnson R S, Jefferson A B, Stokoe D, Giaccia A J. Loss of PTEN facilitates HIF-1-mediated gene expression.  Genes Dev. 2000;  14 391-396
  • 179 Minet E, Michel G, Remacle J, Michiels C. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis.  Int J Mol Med. 2000;  5 253-259
  • 180 Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P, Semenza G L. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1.  Cancer Res. 2003;  63 1138-1143
  • 181 Evans C P, Elfman F, Parangi S, Conn M, Cunha G, Shuman M A. Inhibition of prostate cancer neovascularization and growth by urokinase-plasminogen activator receptor blockade.  Cancer Res. 1997;  57 3594-3599
  • 182 Pepper M S, Montesano R, Mandriota S J, Orci L, Vassalli J D. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis.  Enzyme Protein. 1996;  49 138-162
  • 183 Rabbani S A, Mazar A P. The role of the plasminogen activation system in angiogenesis and metastasis.  Surg Oncol Clin N Am. 2001;  10 393-415, x
  • 184 Lakka S S, Gondi C S, Yanamandra N, Dinh D H, Olivero W C, Gujrati M, Rao J S. Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth.  Cancer Res. 2003;  63 2454-2461
  • 185 Le D M, Besson A, Fogg D K, Choi K S, Waisman D M, Goodyer C G, Rewcastle B, Yong V W. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade.  J Neurosci. 2003;  23 4034-4043
  • 186 Tkachuk V, Stepanova V, Little P J, Bobik A. Regulation and role of urokinase plasminogen activator in vascular remodelling.  Clin Exp Pharmacol Physiol. 1996;  23 759-765

C. Scott

Growth Research Unit · Kolling Institute of Medical Research · Royal North Shore Hospital

Reserve Rd · St Leonards · NSW 2065 · Australia

Phone: +612(9926)8486

Fax: +612(9926)8484

Email: cscott@med.usyd.edu.au

    >