Laryngorhinootologie 2004; 83(1): 14-19
DOI: 10.1055/s-2004-814236
Otologie
© Georg Thieme Verlag Stuttgart · New York

Untersuchungen zur Osteoklastogenese und Knochenresorption im Kalvarienmodell

Expression of Osteoclast Stimulating and Differentiating Factors in a Murine Model of Localized Inflammatory Bone ResorptionH.  Sudhoff 1 , Y.  Liebehenz 1 , J.  Aschenbrenner 1 , S.  Euteneuer 1 , J.  Ebmeyer 2 , M.  Bernal-Sprekelsen 3 , T.  Stark 1 , S.  Dazert 1
  • 1 Hals-Nasen-Ohrenklinik der Ruhr-Universität Bochum, St. Elisabeth Hospital (Direktor: Univ.-Prof. Dr. med. H. Hildmann)
  • 2 Bayerische Julius-Maximilians-Universität, Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke, Würzburg (Direktor: Univ.-Prof. Dr. med. J. Helms)
  • 3 Hals-Nasen-Ohrenklinik, Hospital Clinic, Barcelona, Spanien (Direktor: Prof. Dr. med. M. Bernal-Sprekelsen)
Herrn Professor Dr. med. Dr. h. c. H. Hildmann zum 65. Geburtstag.
Further Information

Publication History

Eingegangen: 30. Juli 2003

Angenommen: 8. Oktober 2003

Publication Date:
23 January 2004 (online)

Zusammenfassung

Hintergrund: Die Destruktion der Gehörknöchelchen und benachbarter Mittelohrstrukturen ist die klinisch bedeutendste Eigenschaft des Cholesteatoms. Um den Pathomechanismus der Osteoklastogenese und der osteoklastären Knochenresorption näher zu untersuchen, wurde in einem neu entwickelten Tiermodell eine lokalisierte inflammatorische Knochenresorption induziert.

Methode: Analog zum Cholesteatom wurde die Knochenresorption durch die Transplantation autologer Vollhaut auf Mäuse-Kalvarien erzielt. Die Expression der Schlüsselzytokine der Osteoklastenaktivierung und -differenzierung Osteoprotegerin Ligand (OPGL), Osteoprotegerin (OPG) und Macrophage-Colony Stimulating Factor (M-CSF) wurde nach 1, 3, 5, 7 und 14 Tagen untersucht. Zum Nachweis von T-Helfer-Zellen und Zellen der Granulozyten-Makrophagen-Linie wurden Antikörper gegen CD 4, CD 11a, CD 11b, CD 14, CD 51, CD 68 and TRAP verwendet.

Ergebnisse: Durch die Vollhautimplantation konnte eine Expression von M-CSF, OPG und dessen OPGL im Bindegewebe induziert werden. Es gelang ebenfalls CD 11a, CD 11b, CD 14, CD 68 sowie TRAP-positive mononukleäre Zellen der Monozyten-/Makrophagenzellinie sowie resorbierende Osteoklasten zeitabhängig nachzuweisen.

Schlussfolgerungen: Es konnte ein direkter Zusammenhang zwischen entzündungsbedingter Reaktion aufgrund der Vollhautimplantate und Aktivierung von Osteoklasten mit anschließender Knochendestruktion in Analogie zum Mittelohrcholesteatom nachgewiesen werden.

Abstract

Background: The pathology associated to cholesteatoma is predominantly a consequence of osteoclast-mediated bone resorption within the middle ear. To assess its pathogenesis a murine model for dermal-implant induced osteolysis was evaluated for the expression of osteoclast stimulating and differentiating factors.

Methods: Mouse calvaria were analysed for the expression of osteoprotegerin ligand (OPGL), osteoprotegerin (OPG) and macrophage-colony stimulating factor (M-CSF) using immunohistochemistry. The detection of osteoclast cell lineage was acquired by immunohistochemistry using markers CD 4, CD 11a, CD 11b, CD 14, CD 51, CD 68 and TRAP.

Results: An increased expression of the investigated cytokines M-CSF, OPG and OPGL was demonstrated by immunohistochemistry. The presence of osteoclast precursor cells and mature resorbing osteoclasts was confirmed in time-dependent manner triggered by dermal implantation.

Conclusions: This study reveals the basic events in osteoclast biology in localized inflammatory bone resorption and provides new insights into the comprehension of cholesteatoma-induced bone resorption.

Literatur

  • 1 Chole R A. The molecular biology of bone resorption due to chronic otitis media.  Ann N Y Acad Sci. 1997;  830 95-109
  • 2 Michaels L, Hellquist H B. Ear, Nose and Throat Histopathology. London, Heidelberg, New York; Springer 2001
  • 3 Steinbach E, Pusalkar A, Heumann H. Cholesteatoma-pathology and treatment.  Adv Otorhinolaryngol. 1988;  39 94-106
  • 4 Chole R A. Cellular and subcellular events of bone resorption in human and experimental cholesteatoma: the role of osteoclasts.  Laryngoscope. 1984;  94 76-95
  • 5 Quinn J, Neale S, Fujikawa Y, McGee J, Athanasou N. Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells.  Calcif Tissue Int. 1998;  62 527-531
  • 6 Jung J Y, Chole R A. Bone resorption in chronic otitis media: the role of the osteoclast.  ORL J Otorhinolaryngol Relat Spec. 2002;  64 95-107
  • 7 Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation.  Nature. 2003;  423 337-342
  • 8 Cheshire I M, Blight A, Ratcliffe W A, Proops D W, Heath D A. Production of parathyroid-hormone-related protein by cholesteatoma cells in culture.  Lancet. 1991;  338 1041-1043
  • 9 Bujia J, Kim C, Ostos P, Sudhoff H, Kastenbauer E, Hultner L. Interleukin 1 (IL-1) and IL-1-receptor antagonist (IL-1-RA) in middle ear cholesteatoma: an analysis of protein production and biological activity.  Eur Arch Otorhinolaryngol. 1996;  253 252-255
  • 10 Kong Y Y, Yoshida H, Sarosi I, Tan H L, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos A J, Van G, Itie A, Khoo W, Wakeham A, Dunstan C R, Lacey D L, Mak T W, Boyle W J, Penninger J M. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis.  Nature. 1999;  397 315-323
  • 11 Lacey D L, Timms E, Tan H L, Kelley M J, Dunstan C R, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.  Cell. 1998;  93 165-176
  • 12 Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie M T, Martin T J, Suda T. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappaB ligand.  Bone. 1999;  25 517-523
  • 13 Huang L, Xu J, Wood D J, Zheng M H. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation.  Am J Pathol. 2000;  156 761-767
  • 14 Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie M T, Martin T J, Suda T. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappaB ligand.  Bone. 1999;  25 517-523
  • 15 Hamzei M, Ventriglia G, Hagnia M, Antonopolous A, Bernal-Sprekelsen M, Dazert S, Hildmann H, SudhofF H. Osteoclast stimulating and differentiating factors in human cholesteatoma.  Laryngoscope. 2003;  113 436-442
  • 16 Sudhoff H, Liebehenz Y, Aschenbrenner J, Jung J, Hildmann H, Dazert S. A murine model of cholesteatoma induced bone resorption using autologous dermal implantation.  Laryngoscope. 2003;  113 1022-1026
  • 17 Hsu S M, Rainc L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immuno-peroxidase techniques. A comparison between ABC and unlabelled antibody (PAP) procedures.  J Histochem Cytochem. 1981;  29 577-580
  • 18 Roodman G D. Cell biology of the osteoclast.  Exp Hematol. 1999;  27 1229-1241
  • 19 Quinn J, McGee J, Athanasou N. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.  J Pathol. 1998;  184 31-36
  • 20 Turmarkin A. Ottic cholesteatosis.  J Laryngol Otol. 1958;  72 610-615
  • 21 Teitelbaum S L. Bone resorption by osteoclasts.  Science. 2000;  289 1504-1508
  • 22 Greenfield E M, Bi Y, Miyauchi A. Regulation of osteoclast activity.  Life Sci. 1999;  65 1087-1102
  • 23 Sudhoff H, Hildmann H, Michaels L. Cholesteatoma: Pathogenesis. In: Ars B (ed) Pathogenesis in Cholesteatoma. The Hague; Kugler Publications 1999: 79-104
  • 24 Sudhoff H, Jung J, Ebmeyer J, Faddis B T, Hildmann H, Chole R A. Zoledronate inhibits osteoclastogenesis in vitro and in keratin particle-induced inflammatory osteolysis in a mouse model.  Annals of Otology, Rhinology & Laryngology. 2003;  112 780-786
  • 25 Peng J C, Hoppe F. Ist die Wiederverwendung autologer Gehörknöchelchen beim Cholesteatom oder der chronischen Schleimhauteiterung gerechtfertigt?.  Laryngo-Rhino-Otologie. 1994;  73 375-380
  • 26 Cinamon U, Kronenberg J, Benayahu D. Structural changes and protein expression in the mastoid bone adjacent to cholesteatoma.  Laryngoscope. 2000;  110 1198-1203
  • 27 Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis.  J Bone Miner Metab. 2000;  18 177-184
  • 28 O’Brien E A, Williams J H, Marshall M J. Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria.  Biochem Biophys Res Commun. 2000;  274 281-290
  • 29 Sudhoff H, Hildmann H. Gegenwärtige Theorien der Cholesteatomentstehung.  HNO. 2003;  51 71-83
  • 30 Hildmann H, Sudhoff H, Jahnke K. Grundzüge einer differenzierten Cholesteatom-Chirurgie.  Laryngo-Rhino-Otologie. 2000;  79 Suppl 2 S73-S94

PD Dr. med. Holger Sudhoff

Hals-Nasen-Ohrenklinik der Ruhr-Universität Bochum · St. Elisabeth Hospital

Bleichstraße 15 · 44787 Bochum

Email: Holger.Sudhoff@ruhr-uni-bochum.de

    >