Plant Biol (Stuttg) 2003; 5(4): 423-431
DOI: 10.1055/s-2003-42712
Original Paper

Georg Thieme Verlag Stuttgart · New York

Emission of Methane and Nitrous Oxide by Australian Mangrove Ecosystems

J. Kreuzwieser 1 , J. Buchholz 1 , H. Rennenberg 1
  • 1Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Freiburg i. Br., Germany
Further Information

Publication History

Publication Date:
02 October 2003 (online)

Abstract

The fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) were measured in mangrove wetlands in Queensland, Australia, using the closed chamber technique. Large differences in the fluxes of both gases from different study sites were observed, which presumably depended on differences in substrate availability. CH4 emission rates were in the range of 20 to 350 µg m-2 h-1, whereas N2O fluxes were lower, amounting to - 2 to 14 µg m-2 h-1. In general, the field sites with high substrate availability showed higher emissions than sites with poor nutrient supply. This assumption is supported by the observation of dramatically increased N2O emissions (150 - 400 µg m-2 h-1) if study sites were artificially fertilised with additional N. As expected, N fertilisation did not alter CH4 fluxes during the period of investigation. In the present study, it was confirmed that the mangrove vegetation may play a role as a transport path for CH4 and N2O by facilitating diffusion out of the soil. Prop roots from Rhizophora stylosa emitted CH4 and N2O at rates of 2.6 and 3.3 µg m-2 root surface h-1, respectively, whereas the soil of this stand acted as a sink for CH4. As a consequence, the ecosystem as a whole could constitute a CH4 source despite CH4 uptake by the soil. In contrast to prop roots, the presence of pneumatophores in Avicennia marina led to a significant increase in CH4 emissions from mangrove soils, but did not enhance N2O emissions. These findings indicate that mangrove ecosystems may be considered a significant source of N2O and that anthropogenic nutrient input into these ecosystems will lead to enhanced source strengths. For an up-scaling of greenhouse gas emissions from mangrove forests to a global scale, more information is needed, particularly on the significance of vegetation.

References

  • 1 Abal E., Dennison W. C.. Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia.  Marine and Freshwater Research. (1996);  47 763-771
  • 2 Abram J. W., Nedwell D. B.. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment.  Archives of Microbiology. (1978);  117 89-92
  • 3 Alongi D. M., Boto K. G., Robertson A. I.. Nitrogen and phosphorus cycles. (Robertson, A. I. and Alongi, D. M., eds.) Coastal and Estuarine Studies, No. 41: Tropical Mangrove Ecosystems. American Geophysical Union (1992): 251-292
  • 4 Alongi D. M., Tirendi F., Clough B. F.. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia.  Aquatic Botany. (2000);  68 97-122
  • 5 Aulakh M. S., Bodenbender J., Wassmann R., Rennenberg H.. Methane transport capacity of rice plants.  I. Influence of methane concentration and growth stage analyzed with an automated measuring system. Nutrient Cycling in Agroecosystems. (2000 a);  58 357-366
  • 6 Aulakh M. S., Bodenbender J., Wassmann R., Rennenberg H.. Methane transport capacity of rice plants.  II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems. (2000 b);  58 367-375
  • 7 Aulakh M. S., Wassmann R., Rennenberg H., Fink S.. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars.  Plant Biology. (2000 c);  2 182-194
  • 8 Bauzá J. F., Morell J. M., Corredor J. E.. Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments.  Estuarine, Coastal and Shelf Sciences. (2002);  55 697-704
  • 9 Breuer L., Butterbach-Bahl K., Papen H.. N2O emission from tropical forest soils of Australia.  Journal of Geophysical Research. (2000);  105 26353-26367
  • 10 Butterbach-Bahl K., Gasche R., Huber C. H., Kreutzer K., Papen H.. Impact of N input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe.  Atmospheric Environment. (1998);  32 559-564
  • 11 Butterbach-Bahl K., Papen H., Rennenberg H.. Impact of gas transport through rice cultivars on methane emission from rice paddy fields.  Plant Cell and Environment. (1997);  20 1175-1183
  • 12 Butterbach-Bahl K., Papen H., Rennenberg H.. Scanning electron microscopy analysis of the aerenchyma in two rice cultivars.  Phyton. (2000);  40 43-56
  • 13 Capone D. G.. Aspects of the marine nitrogen cycle with relevance to the dynamics of nitrous and nitric oxide. (Rogers, J. E. and Whitman, W. B., eds.) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. Washington DC; American Society of Microbiology (1991): 255-275
  • 14 Castro M. S., Steudler P. A., Melillo J. M., Aber J. D., Bowden R. D.. Factors controlling atmospheric methane consumption by temperate forest soils.  Global Biogeochemical Cycles. (1995);  9 1-10
  • 15 Conrad R.. Control of methane production in terrestrial ecosystems. (Andreae, M. O. and Schimel, D. S., eds.) Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. New York; John Wiley and Sons (1989): 39-58
  • 16 Corredor J. E., Morrell J. M.. Nitrate depuration of secondary sewage effluents in mangrove sediments.  Estuaries. (1994);  17 295-300
  • 17 Corredor J. E., Morell J. M., Bauza J.. Atmospheric nitrous oxide fluxes from mangrove sediments.  Marine Pollution Bulletin. (1999);  38 473-478
  • 18 Costanzo S. D., O'Donohue M. J., Dennison W. C., Loneragan N. R., Thomas M.. A new approach for detecting and mapping sewage impacts.  Marine Pollution Bulletin. (2001);  42 149-156
  • 19 Ingvorsen K., Zeickus J. G., Brock T. D.. Dynamics of bacterial sulfate reduction in a eutrophic lake.  Applied and Environmental Microbiology. (1981);  42 1029-1036
  • 20 IPCC .Intergovernmental Panel on Climate Change. Radiative Forcing of Climate Change: The 1994 Report of the Scientific Assessment Working Group of IPCC. Cambridge; Cambridge University Press (1994)
  • 21 IPCC .Special Report on Emission Scenarios. A Special Report of the IPCC (Intergovernmental Panel on Climate Change) Working Group III. (Nakicenovic, N. and Swart, R. eds.) Cambridge; Cambridge University Press (2000)
  • 22 Khalil M. A. K., Rasmussen R. A.. The global sources of nitrous oxide.  Journal of Geophysical Research. (1992);  97 14651-14660
  • 23 Khalil M. A. K., Rasmussen R. A.. Decreasing trend of methane: unpredictability of future concentrations.  Chemosphere. (1993);  26 803-814
  • 24 Kreuzwieser J., Scheerer U., Rennenberg H.. Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees.  Journal of Experimental Botany. (1999);  50 757-765
  • 25 Lovely D. R., Klug M. J.. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.  Applied and Environmental Microbiology. (1983);  45 187-192
  • 26 Lu C. Y., Wong Y. S., Tam N. F. Y., Ye Y., Lin P.. Methane flux and production from sediments of a mangrove wetland on Hainan Island, China.  Mangroves and Salt Marshes. (1999);  3 41-49
  • 27 Mosier A., Kroeze C.. A new approach to estimate emissions of nitrous oxide from agriculture and its implications to the global N2O budget.  IGACtivities NewsLetters. (1998);  12 17-25
  • 28 Munoz-Hincapié M., Morell J. M., Corredor J. E.. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangrove sediments.  Marine Pollution Bulletin. (2002);  44 992-996
  • 29 Nedwell D. B.. Inorganic nitrogen metabolism in a eutrophicated tropical mangrove estuary.  Water Research. (1975);  9 221-231
  • 30 Oremland R. S.. Biogeochemistry of methanogenic bacteria. (Zehnder, A. J. B., ed.) Biology of Anaerobic Microorganisms. New York; Wiley (1988): 641-706
  • 31 Perata P., Alpi A.. Plant responses to anaerobiosis.  Plant Science. (1993);  93 1-17
  • 32 Purvaja R., Ramesh R.. Human impact in CH4 emissions from mangrove ecosystems in India.  Regional Environmental Change. (2000);  1 86-97
  • 33 Purvaja R., Ramesh R.. Natural and anthropogenic methane emission from coastal wetlands of South India.  Environmental Management. (2001);  27 547-557
  • 34 Ramesh R., Purvaja G. R., Parashar D. C., Gupta P. K., Mitra A. P.. Anthropogenic forcing on methane efflux from polluted wetlands (Adyar River) of Madras City, India.  Ambio. (1997);  26 369-374
  • 35 Rennenberg H., Wassmann R., Papen H., Seiler W.. Trace gas exchange in rice cultivation.  The Ecological Bulletin. (1992);  42 164-173
  • 36 Robertson A. I., Alongi D. M., Boto K. G.. Food chains and carbon fluxes. (Robertson, A. I. and Alongi, D. M., eds.) Coastal and Estuarine Studies, No. 41: Tropical Mangrove Ecosystems. American Geophysical Union (1992): 293-326
  • 37 Rogers J.. Responses of mangrove forests to natural and experimental nutrient gradients in Moreton Bay, Australia. University of Queensland, Australia. Bachelor Thesis. (1998)
  • 38 Rusch H., Rennenberg H.. Black alder (Alnus glutinosa [L.] Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere.  Plant and Soil. (1998);  201 1-7
  • 39 Saenger P., Hegerl E. J., Davie J. D. S.. Global status of mangrove ecosystems.  The Environmentalist. (1983);  3 1-88
  • 40 Scholander P. F., van Dam L., Scholander S.. Gas exchange in the roots of mangroves.  American Journal of Botany. (1955);  42 92-98
  • 41 Schütz H., Holzapfel-Pschorn A., Rennenberg H., Seiler W., Conrad R.. A 3-year continuous record on the influence of daytime, season, fertilizer treatment on methane emission rates from an Italian rice paddy.  Journal of Geophysical Research. (1989);  94 405-416
  • 42 Schütz H., Schröder P., Rennenberg H.. Role of plants in regulating the methane flux to the atmosphere. (Sharkey T. D., Holland E. A., and Mooney H. A., eds.) Trace Gas Emissions by Plants. San Diego; Academic Press (1991): 29-63
  • 43 Schütz H., Seiler W., Rennenberg H.. Soil and land use related sources and sinks of methane (CH4) in the context of the global methane budget. (Bouwman, A. F., ed.) Soils and the Greenhouse Effect. Chichester; John Wiley and Sons (1990): 269-285
  • 44 Singh S., Singh J. S.. Plants as conduits for methane in wetlands.  Proceedings of the National Academy of Sciences, India Section B (Biological Science). (1995);  65 147-157
  • 45 Sitaula B. K., Bakken L. R., Abrahamsen G.. CH4 uptake by temperate forest soil: Effect of N input and soil acidification.  Soil Biology and Biochemistry. (1995 a);  27 871-880
  • 46 Sitaula B. K., Bakken L. R., Abrahamsen G.. N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soils.  Soil Biology and Biochemistry. (1995 b);  27 1401-1408
  • 47 Sotomayor D., Corredor J. E., Morell J. M.. Methane flux from mangrove sediments along the southwest coast of Puerto Rico.  Estuaries. (1994);  17 140-147
  • 48 Spalding M. D.. The global distribution status of mangrove ecosystems. Intracoast Network International Newsletter of Coastal Management. Special Edition No. 1.  Narragansett. (1997);  RI 20-21
  • 49 Udy J. W., Dennison W. C.. Physiological responses of seagrasses used to identify anthropogenic nutrient inputs.  Marine and Freshwater Research. (1997);  48 605-614
  • 50 Verma A., Subramanian V., Ramesh R.. Day-time variation in methane emission from two tropical wetlands in Chennai, Tamil Nadu, India.  Current Science. (1999);  76 1020-1022
  • 51 Verma A., Subramanian V., Ramesh R.. Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India.  Chemosphere. (2002);  47 883-889
  • 52 Watson R. T., Rodhe R. H., Oeschger H., Siegenthaler U.. Greenhouse gases and aerosols. (Houghton, J. T., Callandar, B. A., and Varney, S. K., eds.) Climate Change - The IPCC Scientific Assessment. New York; Cambridge University Press (1990): 25-46
  • 53 Whiticar M. J.. Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay.  Marine Geology. (2002);  182 29-53

J. Kreuzwieser

Albert-Ludwigs-Universität Freiburg
Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie

Georges-Köhler-Allee 053/054

79110 Freiburg

Germany

Email: juergen.kreuzwieser@ctp.uni-freiburg.de

Section Editor: B. Demmig-Adams

    >