Aktuelle Neurologie 2003; 30(7): 335-343
DOI: 10.1055/s-2003-41887
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Nicht-invasive prächirurgische Epilepsiediagnostik

Non-Invasive Presurgical Evaluation of EpilepsyA.  Hufnagel1 , S.  Konermann1 , A.  De Greiff2 , A.  Dörfler2 , F.  M.  Knossalla1 , T.  Leniger1
  • 1Neurologische Universitätsklinik Essen
  • 2Abteilung für Neuroradiologie der Universitätsklinik Essen
Further Information

Publication History

Publication Date:
04 September 2003 (online)

Zusammenfassung

Als Kandidaten für eine epilepsiechirurgische Behandlung gelten Patienten, die pharmakoresistent sind und an einer Epilepsie fokalen Ursprungs leiden. Der epilepsiechirurgische Eingriff darf kein zusätzliches, wesentliches neurologisches Defizit herbeiführen. Eine nicht-invasive prächirurgische Epilepsiediagnostik lässt sich bei > 90 % aller OP-Kandidaten durchführen. Die nicht-invasiven Verfahren stützen sich im Kern auf die klinische Anfallsbeschreibung, das Oberflächen-EEG mit interiktaler Aktivitätsaufzeichnung und Anfallsaufzeichnungen sowie die strukturelle und funktionelle kernspintomographische Diagnostik. Begleitend werden neuropsychologische Testverfahren angewendet. Primär soll hierdurch eine Gefährdung des Patienten bezüglich postoperativer kognitiver Defizite erkannt werden. Zudem ergeben sich zusätzliche Hinweise auf die Lokalisation des epileptischen Herdes. Hirnmetabolisch bildgebende Verfahren wie das PET und SPECT liefern supplementäre Informationen. Sie sind immer dann wichtig, wenn Klinik, EEG und MRI widersprüchliche Aussagen liefern oder keinen umschriebenen Anfallsherd erkennen lassen. Die resektiven Verfahren am Temporallappen und extratemporal sowie die Hemisphärektomie führen bei 50 - 80 % der Patienten zur Anfallsfreiheit. Die Kallosotomie, die multiplen subpialen Transektionen und die Stimulation des Nervus vagus sind palliative Verfahren, die eine Verbesserung der Anfallssituation, aber keine dauerhafte Anfallsfreiheit herbeiführen können. Operative Verfahren haben einen festen Platz in der Epilepsietherapie und sind bei 3 - 5 % aller Epilepsiepatienten anwendbar. Im Gegensatz zur Pharmakotherapie können sie kurativ sein. Eine prächirurgische Epilepsiediagnostik sollte in ausgewählten Zentren stattfinden, da sie zeit- und kostenintensiv ist und ein entsprechend erfahrenes Team benötigt. Die nicht-invasiven Verfahren bergen keine relevante gesundheitliche Gefahr in sich. Geeignete Kandidaten sollten früh zugewiesen werden. Dies geschieht letztlich auch unter dem Aspekt, dass therapieresistente Epilepsiepatienten einen Großteil der Kosten dieses Krankheitsbildes verursachen und sich ein günstigeres Kostenprofil nach epilepsiechirurgischem Eingriff ergibt [1].

Abstract

Epilepsy patients with medically intractable focal seizures are considered candidates for surgical treatment. In addition, the risk for substantial new neurological deficits due to surgery must be low. Nowadays, non-invasive presurgical evaluation may be performed in more than 90 % of all patients. The fraction of patients in whom invasive evaluation is performed varies between epilepsy surgery centers. Preselection of patients and techniques considered to be essential for the evaluation by the investigators appear to be the two most important factors affecting this decision. It is essentially based on the clinical seizure semiology, scalp-derived interictal EEG and EEG/Video recordings of seizures as well as morphological and functional MRI. Neuropsychometric evaluation may provide supplementary data as to the location of the epileptogenic zone and identify patients at risk for postoperative cognitive impairment. PET and SPECT imaging may provide additional data to localize or lateralize the epileptogenic zone, especially if results from other methods are conflicting or in the absence of an epileptogenic lesion. With resective surgery in the temporal lobe or extratemporal brain areas complete seizure control may be achieved in approximately 50 - 80 % of all patients. Corpus callosotomy, multiple subpial transactions and vagal nerve stimulation are palliative methods. With these methods worthwhile improvement but not long-term seizure control may be achieved. Epilepsy surgery is a well-established potentially curative treatment applicable in 3 - 5 % of all epilepsy patients. Non-invasive presurgical evaluation should be performed in specialized centres with access to all necessary diagnostic methods and a high level of experience. Non-invasive presurgical evaluation does not bear any relevant risk for the patient and should be performed early in the course of the disease. Epilepsy surgery has been proven to be a cost efficient treatment when compared to medical treatment of pharmaco-resistant epilepsy patients [1].

Literatur

  • 1 Silfvenius H. Cost-benefit of epilepsy surgery.  Acta Neurol Belg. 1999;  99 266-274
  • 2 Buchfelder M, Fahlbusch R, Ganslandt O. et al . Use of intraoperative magnetic resonance imaging in tailored temporal lobe surgeries for epilepsy.  Epilepsia. 2002;  43 864-873
  • 3 Fernandez G, Hufnagel A, Roost D van. et al . Safety of intrahippocampal depth electrodes for presurgical evaluation of patients with intractable epilepsy.  Epilepsia. 1997;  38 922-929
  • 4 Bittencourt P R de, Araujo J C, Leite P J. et al . Epilepsy surgery without invasive EEG. Early results of a new program.  Arq Neuropsiquiatr. 1997;  55 542-546
  • 5 Kilpatrick C, Cook M, Kaye A. et al . Non-invasive investigations successfully select patients for temporal lobe surgery.  J Neurol Neurosurg Psychiatry. 1997;  63 327-333
  • 6 Kwan P, Brodie M J. Early identification of refractory epilepsy.  N Engl J Med. 2000;  342 314-319
  • 7 Attar A, Ugur H C, Savas A. et al . Surgical treatment of intracranial cavernous angiomas.  J Clin Neurosci. 2001;  8 235-239
  • 8 Zumsteg D, Wieser H G. Presurgical evaluation: current role of invasive EEG.  Epilepsia. 2000;  41, Suppl 3 S55-S60
  • 9 So E L. Integration of EEG, MRI, and SPECT in localizing the seizure focus for epilepsy surgery.  Epilepsia. 2000;  41, Suppl 3 S48-S54
  • 10 Serles W, Caramanos Z, Lindinger G. et al . Combining ictal surface-electroencephalography and seizure semiology improves patient lateralization in temporal lobe epilepsy.  Epilepsia. 2000;  41 1567-1573
  • 11 Cascino G D. Video-EEG monitoring in adults.  Epilepsia. 2002;  43, Suppl 3 80-93
  • 12 Boesebeck F, Schulz R, May T, Ebner A. Lateralizing semiology predicts the seizure outcome after epilepsy surgery in the posterior cortex.  Brain. 2002;  125 2320-2331
  • 13 Hufnagel A, Elger C E, Pels H. et al . Prognostic significance of ictal and interictal epileptiform activity in temporal lobe epilepsy.  Epilepsia. 1994;  35 1146-1153
  • 14 Hufnagel A, Poersch M, Elger C E. et al . The clinical and prognostic relevance of the postictal slow focus in the electrocorticogram.  Electroencephalogr Clin Neurophysiol. 1995;  94 12-18
  • 15 Waberski T D, Buchner H, Lehnertz K. et al . Properties of advanced headmodelling and source reconstruction for the localization of epileptiform activity.  Brain Topogr. 1998;  10 283-290
  • 16 Schulz R, Luders H O, Hoppe M. et al . Interictal EEG and ictal scalp EEG propagation are highly predictive of surgical outcome in mesial temporal lobe epilepsy.  Epilepsia. 2000;  41 564-570
  • 17 Hufnagel A, Dumpelmann M, Zentner J. et al . Clinical relevance of quantified intracranial interictal spike activity in presurgical evaluation of epilepsy.  Epilepsia. 2000;  41 467-478
  • 18 Park S A, Lim S R, Kim G S. et al . Ictal electrocorticographic findings related with surgical outcomes in nonlesional neocortical epilepsy.  Epilepsy Res. 2002;  48 199-206
  • 19 Wennberg R A. Poor surgical outcome in patients with neocortical epilepsy is correlated with interictal epileptiform abnormalities outside the area of surgical resection.  Epilepsia. 2000;  41 355-357
  • 20 Pataraia E, Lurger S, Serles W. et al . Ictal scalp EEG in unilateral mesial temporal lobe epilepsy.  Epilepsia. 1998;  39 608-614
  • 21 Ebersole J S. Non-invasive pre-surgical evaluation with EEG/MEG source analysis.  Electroencephalogr Clin Neurophysiol Suppl. 1999;  50 167-174
  • 22 Ishibashi H, Simos P G, Castillo E M. et al . Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region.  J Neurosurg. 2002;  96 724-730
  • 23 Baumgartner C, Pataraia E, Lindinger G, Deecke L. Neuromagnetic recordings in temporal lobe epilepsy.  J Clin Neurophysiol. 2000;  17 177-189
  • 24 Cendes F, Andermann F, Gloor P. et al . MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy.  Neurology. 1993;  43 719-725
  • 25 Watson C, Jack C R, Cendes F. Volumetric magnetic resonance imaging. Clinical applications and contributions to the understanding of temporal lobe epilepsy.  Arch Neurol. 1997;  54 1521-1531
  • 26 Lee S K, Choe G, Hong K S. et al . Neuroimaging findings of cortical dyslamination with cytomegaly.  Epilepsia. 2001;  42 850-856
  • 27 Matsuda K, Mihara T, Tottori T. et al . Neuroradiologic findings in focal cortical dysplasia: histologic correlation with surgically resected specimens.  Epilepsia. 2001;  42, Suppl 6 29-36
  • 28 Jutila L, Ylinen A, Partanen K. et al . MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy.  Am J Neuroradiol. 2001;  22 1490-1501
  • 29 Bernasconi A, Antel S B, Collins D L. et al . Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy.  Ann Neurol. 2001;  49 770-775
  • 30 Kassubek J, Huppertz H J, Spreer J, Schulze-Bonhage A. Detection and localization of focal cortical dysplasia by voxel-based 3D MRI analysis.  Epilepsia. 2002;  43 596-602
  • 31 Lazeyras F, Blanke O, Perrig S. et al . EEG-triggered functional MRI in patients with pharmacoresistant epilepsy.  J Magn Reson Imaging. 2000;  12 177-185
  • 32 Lemieux L, Krakow K, Fish D R. Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization.  Neuroimage. 2001;  14 1097-1104
  • 33 Huppertz H J, Hof E, Klisch J. et al . Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions.  Neuroimage. 2001;  13 15-28
  • 34 Krakow K, Messina D, Lemieux L. et al . Functional MRI activation of individual interictal epileptiform spikes.  Neuroimage. 2001;  13 502-505
  • 35 Zentner J, Hufnagel A, Wolf H K. et al . Surgical treatment of neoplasms associated with medically intractable epilepsy.  Neurosurgery. 1997;  41 378-386; discussion 386 - 387
  • 36 Carpentier A, Pugh K R, Westerveld M. et al . Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy.  Epilepsia. 2001;  42 1241-1254
  • 37 Fernandez G, Greiff A de, Oertzen J von. et al . Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation.  Neuroimage. 2001;  14 585-594
  • 38 Jayakar P, Bernal B, Santiago Medina L, Altman N. False lateralization of language cortex on functional MRI after a cluster of focal seizures.  Neurology. 2002;  58 490-492
  • 39 Golby A J, Poldrack R A, Illes J. et al . Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI.  Epilepsia. 2002;  43 855-863
  • 40 Jokeit H, Okujava M, Woermann F G. Memory fMRI latralizes temporal lobe epilepsy.  Neurology. 2001;  57 1786-1793
  • 41 Warach S, Li W, Ronthal M, Edelman R R. Acute cerebral ischemia: Evaluation with dynamic contrast enhanced MR imaging and MR angiography.  Radiology. 1992;  182 41-47
  • 42 Fisher M, Prichard J W, Warach S. New magnetic resonance techniques for acute ischemic stroke.  JAMA. 1995;  274 908-911
  • 43 Diehl B, Najm I, Ruggieri P. et al . Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy.  Epilepsia. 2001;  42 21-28
  • 44 Kim J A, Chung J I, Yoon P H. et al . Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.  Am J Neuroradiol. 2001;  22 1149-1160
  • 45 Lansberg M G, O'Brien M W, Norbash A M. et al . MRI abnormalities associated with partial status epilepticus.  Neurology. 1999;  52 1021-1027
  • 46 Wieshmann U C, Clark C A, Symms M R. et al . Water diffusion in the human hippocampus in epilepsy.  Magn Reson Imaging. 1999;  17 29-36
  • 47 Hufnagel A, Weber J, Marks S. et al . Brain diffusion after single seizures.  Epilepsia. 2003;  44 54-63
  • 48 Leonhardt G, Greiff A de, Marks S. et al . Brain diffusion during hyperventilation: diffusion-weighted MR-monitoring in patients with temporal lobe epilepsy and in healthy volunteers.  Epilepsy Res. 2002;  51 269-278
  • 49 Konermann S, Marks S, Ludwig T. et al . Presurgical evaluation of epilepsy by brain diffusion: MR-detected effects of flumazenil on the epileptogenic focus.  Epilepsia. 2003;  44 399-407
  • 50 Rugg-Gunn F J, Eriksson S H, Symms M R. et al . Diffusion tensor imaging in refractory epilepsy.  Lancet. 2002;  359 1748-1751
  • 51 Stefan H, Feichtinger M, Pauli E. et al . Magnetic resonance spectroscopy and histopathological findings in temporal lobe epilepsy.  Epilepsia. 2001;  42 41-46
  • 52 Kuzniecky R, Palmer C, Hugg J. et al . Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss?.  Arch Neurol. 2001;  58 2048-2053
  • 53 Antel S B, Li L M, Cendes F. et al . Predicting surgical outcome in temporal lobe epilepsy patients using MRI and MRSI.  Neurology. 2002;  58 1505-1512
  • 54 Lundbom N, Gaily E, Vuori K. et al . Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy.  Epilepsia. 2001;  42 1507-1514
  • 55 Koepp M J, Richardson M P, Labbé C. et al . 11C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy.  Neurology. 1997;  49 764-773
  • 56 Henry T R. PET: Cerebral blood flow and glucose metabolism - Presurgical localization. In: Henry TR, Duncan JS, Berkovic SF (eds) Functional Imaging in the Epilepsies. Philadelphia; Lippincott Williams & Wilkins 2000: 105-120
  • 57 Knowlton R C, Laxer K D, Klein G. et al . In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy.  Neurology. 2001;  57 1184-1190
  • 58 Kim Y K, Lee D S, Lee S K. et al . (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis.  J Nucl Med. 2002;  43 1167-1174
  • 59 O'Brien T J, So E L, Mullan B P. et al . Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome.  Neurology. 2000;  55 1668-1677
  • 60 Arnold S, Berthele A, Drzezga A. et al . Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia.  Epilepsia. 2000;  41 818-824
  • 61 Hammers A, Koepp M J, Hurlemann R. et al . Abnormalities of grey and white matter [11C] flumazenil binding in temporal lobe epilepsy with normal MRI.  Brain. 2002;  125 2257-2271
  • 62 Grunwald F, Menzel C, Pavics L. et al . Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD.  J Nucl Med. 1994;  35 1896-1901
  • 63 Grunwald F, Menzel C, Pietsch T. et al . Increased technetium-99m-HMPAO uptake in grade II astrocytoma.  J Nucl Med. 1995;  36 804-806
  • 64 Weckesser M, Hufnagel A, Ziemons K. et al . Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy.  Eur J Nucl Med. 1997;  24 1156-1161
  • 65 Siegel A M, Jobst B C, Thadani V M. et al . Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients.  Epilepsia. 2001;  42 883-888
  • 66 Helmstaedter C, Elger C E. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study.  Epilepsia. 1996;  37 171-180
  • 67 Helmstaedter C, Gleissner U, Zentner J, Elger C E. Neuropsychological consequences of epilepsy surgery in frontal lobe epilepsy.  Neuropsychologia. 1998;  36 681-689
  • 68 Kurthen M, Helmstaedter C, Linke D B. et al . Quantitative and qualitative evaluation of patterns of cerebral language dominance. An amobarbital study.  Brain Lang. 1994;  46 536-564
  • 69 Rutten G J, Ramsey N F, Rijen P C van. et al . FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test.  Neuroimage. 2002;  17 447-460
  • 70 Duzel E, Hufnagel A, Helmstaedter C, Elger C. Verbal working memory components can be selectively influenced by transcranial magnetic stimulation in patients with left temporal lobe epilepsy.  Neuropsychologia. 1996;  34 775-783
  • 71 Sinclair D B, Aronyk K, Snyder T. et al . Pediatric temporal lobectomy for epilepsy.  Pediatr Neurosurg. 2003;  38 195-205
  • 72 Zentner J, Hufnagel A, Wolf H K. et al . Surgical treatment of temporal lobe epilepsy: clinical, radiological, and histopathological findings in 178 patients.  J Neurol Neurosurg Psychiatry. 1995;  58 666-673
  • 73 Clusmann H, Schramm J, Kral T. et al . Prognostic factors and outcome after different types of resection for temporal lobe epilepsy.  J Neurosurg. 2002;  97 1131-1141
  • 74 Rocco C Di, Iannelli A. Hemimegalencephaly and intractable epilepsy: complications of hemispherectomy and their correlations with the surgical technique. A report on 15 cases.  Pediatr Neurosurg. 2000;  33 198-207
  • 75 Leonhardt G, Bingel U, Spiekermann G. et al . Cortical activation in patients with functional hemispherectomy.  J Neurol. 2001;  248 881-888
  • 76 Fabri M, Polonara G, Pesce M Del. et al . Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient.  J Cogn Neurosci. 2001;  13 1071-1079
  • 77 Hufnagel A, Zentner J, Fernandez G. et al . Multiple subpial transection for control of epileptic seizures: effectiveness and safety.  Epilepsia. 1997;  38 678-688
  • 78 Mulligan L P, Spencer D D, Spencer S S. Multiple subpial transections: the Yale experience.  Epilepsia. 2001;  42 226-229
  • 79 Shimizu T, Maehara T, Hino T. et al . Effect of multiple subpial transection on motor cortical excitability in cortical dysgenesis.  Brain. 2001;  124 1336-1349
  • 80 Leonhardt G, Spiekermann G, Muller S. et al . Cortical reorganization following multiple subpial transection in human brain - a study with positron emission tomography.  Neurosci Lett. 2000;  292 63-65
  • 81 Moo L R, Slotnick S D, Krauss G, Hart J. A prospective study of motor recovery following multiple subpial transections.  Neuroreport. 2002;  13 665-669
  • 82 Spencer S S, Schramm J, Wyler A. et al . Multiple subpial transection for intractable partial epilepsy: an international meta-analysis.  Epilepsia. 2002;  43 141-145
  • 83 Orbach D, Romanelli P, Devinsky O, Doyle W. Late seizure recurrence after multiple subpial transections.  Epilepsia. 2001;  42 1130-1133
  • 84 Regis J, Bartolomei F, Rey M. et al . Gamma knife surgery for mesial temporal lobe epilepsy.  J Neurosurg. 2000;  93, Suppl 3 141-146
  • 85 Schrottner O, Unger F, Eder H G. et al . Gamma-Knife radiosurgery of mesiotemporal tumour epilepsy observations and long-term results.  Acta Neurochir. 2002;  84, Suppl 49-55
  • 86 Regis J, Bartolomei F, Kida Y. et al . Radiosurgery for epilepsy associated with cavernous malformation: retrospective study in 49 patients.  Neurosurgery. 2000;  47 1091-1097
  • 87 Regis J, Bartolomei F, Toffol B de. et al . Gamma knife surgery for epilepsy related to hypothalamic hamartomas.  Neurosurgery. 2000;  47 1343-1351; discussion 1351 - 1352

Prof. Dr. Andreas Hufnagel

Neurologische Universitätsklinik Essen

Hufelandstraße 55

45122 Essen

    >