Plant Biol (Stuttg) 2002; 4(3): 413-422
DOI: 10.1055/s-2002-32342
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Sporulation of Plasmopara viticola: Differentiation and Light Regulation

J. Rumbolz1,4 , S. Wirtz1 , H.-H. Kassemeyer2 , R. Guggenheim1 , E. Schäfer3 , C. Büche2
  • 1 REM-Labor, Universität Basel, Pharmazentrum, Basel, Switzerland
  • 2 Staatliches Weinbauinstitut, Merzhauser Str. 119, 79100 Freiburg i. Br., Germany
  • 3 Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104 Freiburg i. Br., Germany
  • 4 University of California, Department of Plant Pathology, One Shields Ave., Davis, CA 95616, USA
Further Information

Publication History

August 22, 2001

April 4, 2002

Publication Date:
20 June 2002 (online)

Abstract

The development of grape downy mildew (Plasmopara viticola) was followed histologically during the entire latent period until the appearance of mature sporangia. Production of sporangiophores and sporangia was assessed using low-temperature scanning electron (LTSEM) and fluorescent light microscopy. Time-course studies using attached leaves of Vitis vinifera cv. Müller-Thurgau revealed that the production of sporangiophores and sporangia is a highly coordinated process and is completed within 7 h. As this differentiation is assumed to occur only in darkness, the influence of light was investigated. For this purpose, different light regimes were applied to infected leaf discs of V. vinifera cv. Müller-Thurgau. White light irradiation prevented formation of sporangia, although the growth of the mycelium was not affected. Many sporangiophores were observed that were abnormally shaped, i.e., short hyphae in clusters or thin, extremely elongated hyphae. For the formation of mature sporangia, a prolonged dark period was necessary. Light experiments suggest photosensitivity at the end of the latent period. A terminal white light irradiation caused an inhibitory effect, whereas a final phase of darkness promoted sporangium development. Different light qualities were tested, revealing an inhibition of sporangium development by blue light whereas neither red nor far-red light were effective.

References

  • 1 Arens,  K.. (1929);  Physiologische Untersuchungen an Plasmopara viticola, unter besonderer Berücksichtigung der Infektionsbedingungen.  Jahrb. f. wiss. Bot.. 70 93-157
  • 2 Blaeser,  M., and Weltzien,  H. C.. (1978);  The importance of sporulation, dispersal, and germination of sporangia of Plasmopara viticola.  J. Plant Dis. Prot.. 3 155-161
  • 3 Brook,  P. J.. (1979);  Effect of light on sporulation of Plasmopara viticola.  New Zeal. J. Bot.. 17 135-138
  • 4 Carlile,  M. J.. (1970) The photoresponses of fungi. Photobiology of microorganisms. Halladal, P., ed. Wiley-Interscience pp. 309-344
  • 5 Cohen,  Y.,, Eyal,  H.,, and Sadon,  T.. (1975);  Light-induced inhibition of sporangial formation of Phytophthora infestans on tomato leaves.  Can. J. Bot.. 53 2680-2686
  • 6 Cohen,  Y.. (1976);  Interacting effects of light and temperature on sporulation of Peronospora tabacina on tobacco leaves.  Austral. J. Biol. Sci.. 29 281-289
  • 7 Cohen,  Y., and Eyal,  H.. (1977);  Growth and differentiation of sporangia and sporangiophores of Pseudoperonospora cubensis on cucumber cotyledons under various combinations of light and temperature.  Physiol. Plant Pathol.. 10 93-103
  • 8 Cuboni,  G.. (1885);  Gli effeti dell' idrato di calce nella cura delle viti contro la Peronospora.  Lab. Bot. R. Scuola Vit. Conegliano. 10 p
  • 9 Dai,  G. H.,, Andary,  C.,, Mondolet-Cosson,  L.,, and Boubals,  D.. (1995);  Histochemical responses of leaves of in vitro plantlets of Vitis spp. to infection with Plasmopara viticola.  Phytopathology. 85 149-154
  • 10 Dick,  M. W.. (1990) Phylum Oomycota. Handbook of protoctista. Margulis, L., Corliss, J. O., Melkonian, M., Chapman D. J., and McKhann H. I., eds. Boston; Jones and Bartlett Publ. pp. 661-685
  • 11 Dijkwel,  P. P.,, Huijser,  C.,, Weisbeek,  P. J.,, Chua,  N.-H.,, and Smeekens,  S. C. M.. (1997);  Sucrose control of phytochrome A signaling in Arabidopsis. .  Plant Cell. 9 583-595
  • 12 Falloon,  R. E., and Sutherland,  P. W.. (1996);  Peronospora viciae on Pisum sativum: Morphology of asexual and sexual reproductive structures.  Mycologia. 88 473-483
  • 13 Fried,  P. M., and Stuteville,  D. L.. (1977);  Peronospora trifoliorum sporangium development and effects of humidity and light on discharge and germination.  Phytopathology. 67 890-894
  • 14 Gregory,  C. T.. (1912);  Spore germination and infection with Plasmopara viticola. .  Phytopathol.. 2 235-249
  • 15 Harter,  K.,, Talke-Messerer,  C.,, Barz,  W.,, and Schäfer,  E.. (1993);  Light- and sucrose-dependent gene expression in photomixotrophic cell suspension cultures and protoplasts of rape (Brassica napus L.).  Plant J.. 4 507-516
  • 16 Istvanffi,  G., and  Palinkas, G.. (1913);  Etudes sur le mildiou de la vigne.  Ann. Inst. Ampelogr. Hongorois. 4 1-125
  • 17 Kortekamp,  A.,, Wind,  R.,, and Zyprian,  E.. (1998);  Investigation of the interaction of Plasmopara viticola with susceptible and resistant grapevine cultivars.  Z. PflKrankh. PflSchutz. 105 475-488
  • 18 Kumar,  S., and Rzhetsky,  A.. (1996);  Evolutionary relationships of eukaryotic kingdoms.  J. Mol. Evol.. 42 183-193
  • 19 Langcake,  P., and Lovell,  P. A.. (1980);  Light and electron microscopical studies of the infection of Vitis spp. by Plasmopara viticola, the downy mildew pathogen.  Vitis. 19 321-337
  • 20 Leach,  C. M.,, Hildebrand,  P. D.,, and Sutton,  J. C.. (1982);  Sporangium discharge by Peronospora destructor: Influence of humidity, red-infrared radiation, and vibration.  Phytopathology. 72 1052-1056
  • 21 Locci,  R.. (1969);  Direct observations by scanning electron microscopy of the invasion of grapevine leaf tissues by Plasmopara viticola. .  Riv. Patol. Veg. Ital.. Serie IV 5 199-212
  • 22 Mooney,  J. L., and Yager,  L. N.. (1990);  Light is required for conidation in Aspergillus nidulans.  Genes Dev.. 4 1473-1482
  • 23 Müller,  K., and Sleumer,  H.. (1934);  Biologische Untersuchungen über die Peronosporakrankheit des Weinstocks.  Landw. Jahrb. Berlin. 79 509-576
  • 24 Müller,  T.,, Guggenheim,  R.,, Düggelin,  M.,, and Scheidegger,  C.. (1991);  Freeze fracturing for conventional and field emission low-temperature scanning electron microscopy: The cryo scanning unit SCU 020.  J. Microscopy. 161 73-83
  • 25 Rumbolz,  J.,, Kassemeyer,  H.-H.,, Steinmetz,  V.,, Deising,  H. B.,, Mendgen,  K.,, Mathys,  D.,, Wirtz,  S.,, and Guggenheim,  R.. (2000);  Differentiation of infection structures of the powdery mildew fungus Uncinula necator and adhesion to the host cuticle.  Can. J. Bot.. 78 409-421
  • 26 Schäfer,  E.. (1975);  A new approach to explain the “high irradiance responses” of photomorphogenesis on the basis of phytochrome.  J. Math. Biol.. 2 41-56
  • 27 Schäfer,  E.. (1977) Kunstlicht und Pflanzenzucht. Optische Strahlungsquellen. Albrecht, H., ed. Grafenau; Lexika-Verlag pp. 249-266
  • 28 Su,  H.,, van Bruggen,  A. H.C.,, and Subbarao,  K. V.. (2000);  Spore release of Bremia lactucae on lettuce is affected by timing of light initiation and decrease in relative humidity.  Phytopathology. 90 67-71
  • 29 Van De Peer,  Y., and De Wachter,  R.. (1997);  Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA.  J. Mol. Evol.. 45 619-630
  • 30 Williamson,  B.,, Breese,  W. A.,, and Shattock,  R. C.. (1995);  A histological study of downy mildew (Peronospora rubi) infection of leaves, flowers and developing fruits of Tummelberry and other Rubus spp.  Mycol. Res.. 99 1311-1316
  • 31 Yarwood,  C. E.. (1937);  The relation of light to the diurnal cycle of sporulation of certain downy mildews.  J. Agr. Res.. 54 365-373

J. Rumbolz

University of California
Department of Plant Pathology

One Shields Ave.
Davis, CA 95616
USA

Email: jrumbolz@ucdavis.edu

Section Editor: J. Draper

    >