Exp Clin Endocrinol Diabetes 2001; 109(5): 288-293
DOI: 10.1055/s-2001-16349
Articles

© Johann Ambrosius Barth

Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

T. J. Parsons 1 , M. van Dusseldorp 2 , M. J. Seibel 3 , W. A. van Staveren 4
  • 1 Systematic Reviews Training Unit, Department of Paediatric Epidemiology and Biostatistics, Institute of Child Health, London, UK
  • 2 TNO Nutrition and Food Research Institute, Zeist, The Netherlands
  • 3 Department of Medicine, Division of Endocrinology and Metabolism, University of Heidelberg Medical School, Heidelberg, Germany
  • 4 Division of Human Nutrition and Epidemiology, Wageningen University and Research Center, Wageningen, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Summary:

Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by higher levels of serum osteocalcin and alkaline phosphatase and lower levels of urinary cross-links. Group differences in calciotropic hormones and mineral excretion were also investigated. Bone measurements, blood, and urine samples were obtained from 69 macrobiotic (34 girls, 35 boys) and 99 control (57 girls, 42 boys) subjects, aged 9-15. Bone turnover markers and 1,25(OH)2D reached maximal levels at pubertal stages 3-4, and decreased thereafter. After adjusting for puberty, age, and lean body mass, no group differences were found in markers of bone turnover, 1,25(OH)2D, PTH, or calcium excretion, but phosphate excretion was 23% lower in macrobiotic girls. After adjustment for puberty, 1,25(OH)2D was positively related to osteocalcin. In summary, we found no evidence for group differences in bone turnover, or catch up in relative bone mass, which might be due to the fact that 60% of subjects were still in early stages of puberty.

References

  • 1 Branca F, Robins S P, Ferro-Luzzi A, Golden M HN. Bone turnover in malnourished children.  Lancet. 340 1493-1496 1992; 
  • 2 Dagnelie P C, van Dusseldorp M, van Staveren W A, Hautvast J G. Effects of macrobiotic diets on linear growth in infants and children until 10 years of age.  Eur J Clin Nutr 48 (00(Suppl 1)) S103-S111 1994; 
  • 3 Daniels E D, Pettifor J M, Schnitzler C M, Moodley G P, Zachen D. Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women.  Osteoporos Int. 7 105-112 1997; 
  • 4 FAO .Handbook on human nutritional requirement. FAO Food and Nutrition Series, Rome no 4 1988
  • 5 Finkelstein J S, Klibanski A, Schaefer E H, Hornstein M D, Schiff I, Neer R M. Parathyroid hormone for the prevention of bone loss induced by estrogen deficiency.  N Engl J Med. 331 1618-1623 1994; 
  • 6 Fox S I. Human physiology. Fifth Edition. William C Brown, Chicago 1996
  • 7 Hulshof K FAM, Heiden-Winkeldermat H J, Kistemaker C, Beresteijn E CHv. De calciuminneming uit zuivelprodukten: meting via een schriftelikje vragenlijst.  Voeding. 11 302-306 1989; 
  • 8 Matkovic V, Ilich J Z, Andon M B, Hsieh L C, Tzagournis M A, Lagger B L, Goel P K. Urinary calcium, sodium, and bone mass of young females.  Am J Clin Nutr. 62 417-425 1995; 
  • 9 Parsons T J, van Dusseldorp M, van der Vliet M, van den Werken K, Schaafsma G, van Staveren W A. Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.  J Bone Miner Res. 12 1486-1494 1997; 
  • 10 Pratt D A, Daniloff Y, Duncan A, Robins S P. Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography.  Anal Biochem. 207 168-175 1992; 
  • 11 Prentice A, Parsons T J, Cole T J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants.  Am J Clin Nutr. 60 837-842 1994; 
  • 12 Reid I R, Cullen S, Schooler B A, Livingston N E, Evans M C. Calcitropic hormone levels in Polynesians: Evidence against their role in interracial differences in bone mass.  J Clin Endocrinol Metab. 70 1452-1456 1990; 
  • 13 Robins S P. Biochemical markers for assessing skeletal growth.  Eur J Clin Nutr 48 (00(Suppl 1)) S199-S209 1994; 
  • 14 Robins S P, Duncan A, Wilson N, Evans B J. Standardization of pyridinium crosslinks, pyridinoline and deoxypyridinoline, for use as biochemical markers of collagen degradation.  Clin Chem. 42 1621-1626 1996; 
  • 15 Stichting N EVO. Dutch food and nutrition table (NEVO tabel). Voorlichtingsbureau voor de Voeding, Zeist, 1993
  • 16 Tam C S, Heersche J NM, Murray T M, Parsons J A. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: Differential effects of intermittent and continuous administration.  Endocrinology. 110 506-512 1982; 
  • 17 Tanner J M. The development of the reproductive system. In: Growth at Adolescence. Second Edition Blackwell Scientific Publications, Oxford and Edinburgh 28-39 1962
  • 18 van Dusseldorp M, Schneede J, de Boer E J, Refsum H, Ueland P M, Thomas C MG, van Staveren W A. Risk of persisting cobalamin deficiency in lacto-ovo-vegetarian adolescents fed a macrobiotic diet in early life.  Am J Clin Nutr. 69 664-671 1999; 

Dr. Tessa Parsons

Systematic Reviews Training Unit

Department of Paediatric Epidemiology and Biostatistics

Institute of Child Health

30 Guilford Street

London WC1N 1EH

U.K.

Phone: +44 20 7905 2146

Fax: +44 20 7813 8233

Email: t.parsons@ich.ucl.ac.uk

    >