Semin intervent Radiol 2023; 40(06): 515-523
DOI: 10.1055/s-0043-1777711
Review Article

Liver-Directed Therapy Combined with Systemic Therapy: Current Status and Future Directions

Shamar Young
1   Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
,
Jack Hannallah
1   Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
,
Dan Goldberg
1   Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
,
Mohammad Khreiss
3   Division of Surgical Oncology, Department of Surgery, University of Arizona, Tucson, Arizona
,
Rachna Shroff
2   Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
,
Junaid Arshad
2   Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
,
Aaron Scott
2   Division of Hematology and Oncology, Department of Medicine, University of Arizona, Tucson, Arizona
,
Gregory Woodhead
1   Division of Interventional Radiology, Department of Medical Imaging, University of Arizona, Tucson, Arizona
› Author Affiliations

Abstract

In the past several decades, major advances in both systemic and locoregional therapies have been made for many cancer patients. This has led to modern cancer treatment algorithms frequently calling for active interventions by multiple subspecialists at the same time. One of the areas where this can be clearly seen is the concomitant use of locoregional and systemic therapies in patients with primary or secondary cancers of the liver. These combined algorithms have gained favor over the last decade and are largely focused on the allure of the combined ability to control systemic disease while at the same time addressing refractory/resistant clonal populations. While the general concept has gained favor and is likely to only increase in popularity with the continued establishment of viable immunotherapy treatments, for many patients questions remain. Lingering concerns over the increase in toxicity when combining treatment methods, patient selection, and sequencing remain for multiple cancer patient populations. While further work remains, some of these questions have been addressed in the literature. This article reviews the available data on three commonly treated primary and secondary cancers of the liver, namely, hepatocellular carcinoma, cholangiocarcinoma, and metastatic colorectal cancer. Furthermore, strengths and weaknesses are reviewed and future directions are discussed.



Publication History

Article published online:
24 January 2024

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Edeline J, Touchefeu Y, Guiu B. et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol 2020; 6 (01) 51-59
  • 2 Mulcahy MF, Mahvash A, Pracht M. et al; EPOCH Investigators. radioembolization with chemotherapy for colorectal liver metastases: a randomized, open-label, international, multicenter, phase III trial. J Clin Oncol 2021; 39 (35) 3897-3907
  • 3 Ding X, Sun W, Li W. et al. Transarterial chemoembolization plus lenvatinib versus transarterial chemoembolization plus sorafenib as first-line treatment for hepatocellular carcinoma with portal vein tumor thrombus: a prospective randomized study. Cancer 2021; 127 (20) 3782-3793
  • 4 Ricke J, Klümpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71 (06) 1164-1174
  • 5 Meyer T, Fox R, Ma YT. et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol 2017; 2 (08) 565-575
  • 6 Lencioni R, Llovet JM, Han G. et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol 2016; 64 (05) 1090-1098
  • 7 Yau T, Park JW, Finn RS. et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2022; 23 (01) 77-90
  • 8 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 9 Young S, Hannallah J, Goldberg D. et al. Friend or foe? Locoregional therapies and immunotherapies in the current hepatocellular treatment landscape. Int J Mol Sci 2023; 24 (14) 11434
  • 10 Poultsides GA, Zhu AX, Choti MA, Pawlik TM. Intrahepatic cholangiocarcinoma. Surg Clin North Am 2010; 90 (04) 817-837
  • 11 Oh DY, He AR, Qin S. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. N Engl J Med Evid 2022; 1 (08) 1-11
  • 12 Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology 2009; 136 (04) 1134-1144
  • 13 Valle J, Wasan H, Palmer DH. et al; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362 (14) 1273-1281
  • 14 Konstantinidis IT, Groot Koerkamp B, Do RKG. et al. Unresectable intrahepatic cholangiocarcinoma: systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016; 122 (05) 758-765
  • 15 Avila S, Smani DA, Koay EJ. Radiation dose escalation for locally advanced unresectable intrahepatic and extrahepatic cholangiocarcinoma. Chin Clin Oncol 2020; 9 (01) 10
  • 16 Young S, Torkian P, Flanagan S, D'Souza D, Sanghvi T, Golzarian J. Intrahepatic cholangiocarcinoma: a dose threshold evaluation in those undergoing transarterial radioembolization. J Gastrointest Oncol 2023; 14 (05) 2202-2211
  • 17 Hoffmann RT, Paprottka PM, Schön A. et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Intervent Radiol 2012; 35 (01) 105-116
  • 18 Mouli S, Memon K, Baker T. et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. J Vasc Interv Radiol 2013; 24 (08) 1227-1234
  • 19 Jia Z, Paz-Fumagalli R, Frey G, Sella DM, McKinney JM, Wang W. Resin-based yttrium-90 microspheres for unresectable and failed first-line chemotherapy intrahepatic cholangiocarcinoma: preliminary results. J Cancer Res Clin Oncol 2017; 143 (03) 481-489
  • 20 Buettner S, Braat AJAT, Margonis GA. et al. Yttrium-90 radioembolization in intrahepatic cholangiocarcinoma: a multicenter retrospective analysis. J Vasc Interv Radiol 2020; 31 (07) 1035-1043.e2
  • 21 White J, Carolan-Rees G, Dale M. et al. Yttrium-90 transarterial radioembolization for chemotherapy-refractory intrahepatic cholangiocarcinoma: a prospective, observational study. J Vasc Interv Radiol 2019; 30 (08) 1185-1192
  • 22 Köhler M, Harders F, Lohöfer F. et al. Prognostic factors for overall survival in advanced intrahepatic cholangiocarcinoma treated with yttrium-90 radioembolization. J Clin Med 2019; 9 (01) 56
  • 23 Paz-Fumagalli R, Core J, Padula C. et al. Safety and initial efficacy of ablative radioembolization for the treatment of unresectable intrahepatic cholangiocarcinoma. Oncotarget 2021; 12 (20) 2075-2088
  • 24 Bargellini I, Mosconi C, Pizzi G. et al. Yttrium-90 radioembolization in unresectable intrahepatic cholangiocarcinoma: results of a multicenter retrospective study. Cardiovasc Intervent Radiol 2020; 43 (09) 1305-1314
  • 25 Ning Z, Xie L, Yan X. et al. Transarterial chemoembolization plus lenvatinib with or without a PD-1 inhibitor for advanced and metastatic intrahepatic cholangiocarcinoma: a retrospective real-world study. Br J Radiol 2023; 96 (1150): 20230079
  • 26 Park SY, Kim JH, Yoon HJ, Lee IS, Yoon HK, Kim KP. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin Radiol 2011; 66 (04) 322-328
  • 27 Martin II RCG, Simo KA, Hansen P. et al. Drug-eluting bead, irinotecan therapy of unresectable intrahepatic cholangiocarcinoma (DELTIC) with concomitant systemic gemcitabine and cisplatin. Ann Surg Oncol 2022; 29 (09) 5462-5473
  • 28 Bourien H, Pircher CC, Guiu B. et al. Locoregional treatment in intrahepatic cholangiocarcinoma: Which treatment for which patient?. Cancers (Basel) 2023; 15 (17) 4217
  • 29 Xu C, Li L, Xu W. et al. Ultrasound-guided percutaneous microwave ablation versus surgical resection for recurrent intrahepatic cholangiocarcinoma: intermediate-term results. Int J Hyperthermia 2019; 36 (01) 351-358
  • 30 Butros SR, Shenoy-Bhangle A, Mueller PR, Arellano RS. Radiofrequency ablation of intrahepatic cholangiocarcinoma: feasibility, local tumor control, and long-term outcome. Clin Imaging 2014; 38 (04) 490-494
  • 31 Giorgio A, Gatti P, Montesarchio L. et al. Intrahepatic cholangiocarcinoma and thermal ablation: long-term results of an Italian retrospective multicenter study. J Clin Transl Hepatol 2019; 7 (04) 287-292
  • 32 Ferlay J, Colombet M, Soerjomataram I. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 2018; 103: 356-387
  • 33 Reurs T, Van Coevorden F, Punt CJA. et al. Local treatment of unresectable colorectal liver metastases: results of a randomized phase II trial. J Natl Cancer Inst 2017; 109 (09) DOI: 10.1093/jnci/djx015.
  • 34 Tomlinson JS, Jarnagin WR, DeMatteo RP. et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 2007; 25 (29) 4575-4580
  • 35 Wasan HS, Gibbs P, Sharma NK. et al; FOXFIRE Trial Investigators, SIRFLOX Trial Investigators, FOXFIRE-Global Trial Investigators. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18 (09) 1159-1171
  • 36 Wang C, Park J, Ouyang C. et al. A pilot feasibility study of yttrium-90 liver radioembolization followed by durvalumab and tremelimumab in patients with microsatellite stable colorectal cancer liver metastases. Oncologist 2020; 25 (05) 382-e776
  • 37 Ishikawa T, Imai M, Sato R. et al. Prognostic value of TACE with irinotecan-loaded drug-eluting beads (DEBIRI) in patients with liver metastases from unresectable colorectal cancer. Anticancer Res 2023; 43 (08) 3647-3651
  • 38 Malagari K, Kiakidis T, Moschouris H. et al. Prospective series of transarterial chemoembolization of metastatic colorectal cancer to the liver with 30-60 μm microspheres loaded with irinotecan. Cardiovasc Intervent Radiol 2023; 46 (07) 880-890
  • 39 Lu H, Zheng C, Fan L, Xiong B. Efficacy and safety of TACE combined with regorafenib versus TACE in the third-line treatment of colorectal liver metastases. J Oncol 2022; 2022: 5366011
  • 40 Cao F, Zheng J, Luo J, Zhang Z, Shao G. Treatment efficacy and safety of regorafenib plus drug-eluting beads-transarterial chemoembolization versus regorafenib monotherapy in colorectal cancer liver metastasis patients who fail standard treatment regimens. J Cancer Res Clin Oncol 2021; 147 (10) 2993-3002
  • 41 Fiorentini G, Sarti D, Nardella M. et al. Chemoembolization alone or associated with bevacizumab for therapy of colorectal cancer metastases: preliminary results of a randomized study. In Vivo 2020; 34 (02) 683-686
  • 42 Tanaka T, Sato T, Nishiofuku H. et al. Selective TACE with irinotecan-loaded 40 μm microspheres and FOLFIRI for colorectal liver metastases: phase I dose escalation pharmacokinetic study. BMC Cancer 2019; 19 (01) 758
  • 43 Aliberti C, Fiorentini G, Muzzio PC. et al. Trans-arterial chemoembolization of metastatic colorectal carcinoma to the liver adopting DC Bead®, drug-eluting bead loaded with irinotecan: results of a phase II clinical study. Anticancer Res 2011; 31 (12) 4581-4587
  • 44 Puijk RS, Ruarus AH, Vroomen LGPH. et al; COLLISION Trial Group. Colorectal liver metastases: surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial. BMC Cancer 2018; 18 (01) 821
  • 45 Löffler MW, Nussbaum B, Jäger G. et al. A non-interventional clinical trial assessing immune responses after radiofrequency ablation of liver metastases from colorectal cancer. Front Immunol 2019; 10: 2526
  • 46 Ruers T, Van Coevorden F, Punt CJA. et al; European Organisation for Research and Treatment of Cancer (EORTC), Gastro-Intestinal Tract Cancer Group, Arbeitsgruppe Lebermetastasen und tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO), National Cancer Research Institute Colorectal Clinical Study Group (NCRI CCSG). Local treatment of unresectable colorectal liver metastases: results of a randomized phase II trial. J Natl Cancer Inst 2017; 109 (09) 15
  • 47 Ruers T, Punt C, Van Coevorden F. et al; EORTC Gastro-Intestinal Tract Cancer Group, Arbeitsgruppe Lebermetastasen und—tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO) and the National Cancer Research Institute Colorectal Clinical Study Group (NCRI CCSG). Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004). Ann Oncol 2012; 23 (10) 2619-2626
  • 48 Ji JH, Park SH, Lee J. et al. Prospective phase II study of neoadjuvant FOLFOX6 plus cetuximab in patients with colorectal cancer and unresectable liver-only metastasis. Cancer Chemother Pharmacol 2013; 72 (01) 223-230
  • 49 Weilert H, Sadeghi D, Lipp M, Oldhafer KJ, Donati M, Stang A. Potential for cure and predictors of long-term survival after radiofrequency ablation for colorectal liver metastases: a 20-years single-center experience. Eur J Surg Oncol 2022; 48 (12) 2487-2494
  • 50 Tinguely P, Ruiter SJS, Engstrand J. et al. A prospective multicentre trial on survival after Microwave Ablation VErsus Resection for Resectable Colorectal liver metastases (MAVERRIC). Eur J Cancer 2023; 187: 65-76
  • 51 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380
  • 52 Llovet JM, Ricci S, Mazzaferro V. et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 53 Cheng AL, Kang YK, Chen Z. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10 (01) 25-34
  • 54 Mandlik DS, Mandlik SK, Choudhary HB. Immunotherapy for hepatocellular carcinoma: current status and future perspectives. World J Gastroenterol 2023; 29 (06) 1054-1075
  • 55 Vilgrain V, Pereira H, Assenat E. et al; SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18 (12) 1624-1636
  • 56 Chow PKH, Gandhi M, Tan SB. et al; Asia-Pacific Hepatocellular Carcinoma Trials Group. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 2018; 36 (19) 1913-1921
  • 57 Zhan C, Ruohoniemi D, Shanbhogue KP. et al. Safety of combined yttrium-90 radioembolization and immune checkpoint inhibitor immunotherapy for hepatocellular carcinoma. J Vasc Interv Radiol 2020; 31 (01) 25-34
  • 58 Tai D, Loke K, Gogna A. et al. Radioembolisation with Y90-resin microspheres followed by nivolumab for advanced hepatocellular carcinoma (CA 209-678): a single arm, single centre, phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (12) 1025-1035
  • 59 Ranganathan S, Gabr A, Entezari P. et al. Radioembolization for intermediate-stage hepatocellular carcinoma maintains liver function and permits systemic therapy at progression. J Vasc Interv Radiol 2023; 34 (06) 968-975
  • 60 Chew V, Lee YH, Pan L. et al. Immune activation underlies a sustained clinical response to yttrium-90 radioembolisation in hepatocellular carcinoma. Gut 2019; 68 (02) 335-346
  • 61 Rivoltini L, Bhoori S, Camisaschi C. et al. Y90-radioembolisation in hepatocellular carcinoma induces immune responses calling for early treatment with multiple checkpoint blockers. Gut 2023; 72 (02) 406-407
  • 62 Seidensticker M, Powerski M, Seidensticker R. et al. Cytokines and 90Y-radioembolization: relation to liver function and overall survival. Cardiovasc Intervent Radiol 2017; 40 (08) 1185-1195
  • 63 Öcal O, Kupčinskas J, Morkunas E. et al. Prognostic value of baseline interleukin 6 levels in liver decompensation and survival in HCC patients undergoing radioembolization. EJNMMI Res 2021; 11 (01) 51
  • 64 Cha H, Lee EJ, Seong J. Multi-analyte analysis of cytokines that predict outcomes in patients with hepatocellular carcinoma treated with radiotherapy. World J Gastroenterol 2017; 23 (11) 2077-2085
  • 65 Deng J, Liao Z, Gao J. Efficacy of transarterial chemoembolization combined with tyrosine kinase inhibitors for hepatocellular carcinoma patients with portal vein tumor thrombus: a systematic review and meta-analysis. Curr Oncol 2023; 30 (01) 1243-1254
  • 66 Fan W, Yuan G, Fan H. et al. Apatinib combined with transarterial chemoembolization in patients with hepatocellular carcinoma and portal vein tumor thrombus: a multicenter retrospective study. Clin Ther 2019; 41 (08) 1463-1476
  • 67 Shen L, Chen S, Qiu Z. et al. Transarterial chemoembolization combined with apatinib versus transarterial chemoembolization alone for hepatocellular carcinoma with macroscopic vascular invasion: a propensity score matching analysis. J Cancer Res Ther 2020; 16 (05) 1063-1068
  • 68 Sun T, Chen L, Kan X. et al. A comparative analysis of efficacy of apatinib combined with transarterial chemoembolization and transarterial chemoembolization alone in the treatment of hepatocellular carcinoma with portal vein tumor thrombus. J Oncol 2022; 2022: 1255133
  • 69 Wang K, Guo WX, Chen MS. et al. Multimodality treatment for hepatocellular carcinoma with portal vein tumor thrombus: a large-scale, multicenter, propensity matching score analysis. Medicine (Baltimore) 2016; 95 (11) e3015
  • 70 Yuan J, Yin X, Tang B. et al. Transarterial chemoembolization (TACE) combined with sorafenib in treatment of HBV background hepatocellular carcinoma with portal vein tumor thrombus: a propensity score matching study. BioMed Res Int 2019; 2019: 2141859
  • 71 Zhu K, Chen J, Lai L. et al. Hepatocellular carcinoma with portal vein tumor thrombus: treatment with transarterial chemoembolization combined with sorafenib – a retrospective controlled study. Radiology 2014; 272 (01) 284-293
  • 72 Yang B, Jie L, Yang T. et al. TACE plus lenvatinib versus TACE plus sorafenib for unresectable hepatocellular carcinoma with portal vein tumor thrombus: a prospective cohort study. Front Oncol 2021; 11: 821599
  • 73 Li J, Kong M, Yu G. et al. Safety and efficacy of transarterial chemoembolization combined with tyrosine kinase inhibitors and camrelizumab in the treatment of patients with advanced unresectable hepatocellular carcinoma. Front Immunol 2023; 14: 1188308
  • 74 Chiang CL, Chiu KWH, Chan KSK. et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma (START-FIT): a single-arm, phase 2 trial. Lancet Gastroenterol Hepatol 2023; 8 (02) 169-178
  • 75 Yang X, Deng H, Sun Y. et al. Efficacy and safety of regorafenib plus immune checkpoint inhibitors with or without TACE as a second-line treatment for advanced hepatocellular carcinoma: a propensity score matching analysis. J Hepatocell Carcinoma 2023; 10: 303-313
  • 76 Yuan L, Feng J, Zhang Y. et al. Transarterial chemoembolization plus immune checkpoint inhibitor as postoperative adjuvant therapy for hepatocellular carcinoma with portal vein tumor thrombus: a multicenter cohort study. Eur J Surg Oncol 2023; 49 (07) 1226-1233
  • 77 Dromi SA, Walsh MP, Herby S. et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology 2009; 251 (01) 58-66
  • 78 Multhoff G, Pockley AG, Streffer C, Gaipl US. Dual role of heat shock proteins (HSPs) in anti-tumor immunity. Curr Mol Med 2012; 12 (09) 1174-1182
  • 79 Haen SP, Gouttefangeas C, Schmidt D. et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones 2011; 16 (05) 495-504
  • 80 Fietta AM, Morosini M, Passadore I. et al. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 2009; 70 (07) 477-486
  • 81 Wissniowski TT, Hänsler J, Neureiter D. et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res 2003; 63 (19) 6496-6500
  • 82 Bastianpillai C, Petrides N, Shah T, Guillaumier S, Ahmed HU, Arya M. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment. Tumour Biol 2015; 36 (12) 9137-9146
  • 83 Blackwood CE, Cooper IS. Response of experimental tumor systems to cryosurgery. Cryobiology 1972; 9 (06) 508-515
  • 84 Tanaka S. Immunological aspects of cryosurgery in general surgery. Cryobiology 1982; 19 (03) 247-262
  • 85 Sabel MS, Nehs MA, Su G, Lowler KP, Ferrara JL, Chang AE. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat 2005; 90 (01) 97-104
  • 86 Jansen MC, van Hillegersberg R, Schoots IG. et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery 2010; 147 (05) 686-695
  • 87 Duffy AG, Ulahannan SV, Makorova-Rusher O. et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 88 Qiao W, Wang Q, Hu C. et al. Interim efficacy and safety of PD-1 inhibitors in preventing recurrence of hepatocellular carcinoma after interventional therapy. Front Immunol 2022; 13: 1019772
  • 89 Torkian P, Haghshomar M, Farsad K, Wallace S, Golzarian J, Young SJ. Cancer Immunology. AJR Am J Roentgenol 2023; 220 (06) 863-872
  • 90 Frey B, Rubner Y, Wunderlich R. et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies. Curr Med Chem 2012; 19 (12) 1751-1764
  • 91 Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 2015; 356 (01) 82-90
  • 92 Young S, Ragulojan R, Chen T. et al. Dynamic lymphocyte changes following transarterial radioembolization: association with normal liver dose and effect on overall survival. J Hepatocell Carcinoma 2022; 9: 29-39