Semin Reprod Med 2018; 36(05): 273-279
DOI: 10.1055/s-0038-1676850
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Life Interrupted: The Nature and Consequences of Cryostasis

Henry Malter
1   Director of Laboratories, Fertility Center of the Carolinas, University of South Carolina School of Medicine, Greenville South Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
04 April 2019 (online)

Abstract

Cryopreservation and associated cryostorage has become a well-established technique in both basic and clinical science. When the potentially lethal consequences of freezing itself are ameliorated, existence at cryogenic temperatures seems to be a form of true viable stasis that can persist for long periods of time. Natural cryopreservation and revival after long-term periods in cryostasis is reality in many species. While some evidence exists for imperfections in artificial cryopreservation protocols and storage, these protocols are for the most part successful and compatible with efficient restoration of vitality in a variety of biomaterial after freezing. Clinical protocols in use for cryopreserving and storing gametes and embryos in human-assisted reproduction are similarly well proven and supported by a large body of basic science and clinical outcome data.

 
  • References

  • 1 Nikolaos M. The Greek Orthodox position on the ethics of assisted reproduction. Reprod Biomed Online 2008; 17 (Suppl. 03) 25-33
  • 2 Schenker JG. Assisted reproductive technology: perspectives in Halakha (Jewish religious law). Reprod Biomed Online 2008; 17 (Suppl. 03) 17-24
  • 3 Al-Bar M, Ali M, Chamsi-Pasha H. Contemporary Bioethics: Islamic Perspective. New York, NY: Springer; 2015
  • 4 Herschy B, Whicher A, Camprubi E. , et al. An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 2014; 79 (5-6): 213-227
  • 5 Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 1972; 71 (02) 345-355
  • 6 Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164 (4172): 666
  • 7 Baust JG, Gao D, Baust JM. Cryopreservation: an emerging paradigm change. Organogenesis 2009; 5 (03) 90-96
  • 8 Huebinger J, Han HM, Hofnagel O, Vetter IR, Bastiaens PIH, Grabenbauer M. Direct measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization. Biophys J 2016; 110 (04) 840-849
  • 9 Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984; 247 (3, Pt 1): C125-C142
  • 10 Schroeter B, Green TGA, Kappen L, Seppelt RD. Carbon dioxide exchange at subzero temperatures: field measurements in Umbilicaria aprina in Antarctica. Cryptogam Bot 1994; 4: 233-241
  • 11 Koshima S. A novel cold-tolerant insect found in a Himalayan glacier. Nature 1984; 310: 225-227
  • 12 Sattler B, Puxbaum H, Psenner R. Bacterial growth in supercooled cloud droplets. Geophys Res Lett 2001; 28: 239-242
  • 13 Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 2004; 101 (13) 4631-4636
  • 14 Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC. A low temperature limit for life on Earth. PLoS One 2013; 8 (06) e66207
  • 15 Wowk B. Thermodynamic aspects of vitrification. Cryobiology 2010; 60 (01) 11-22
  • 16 Hansen LD, Criddle RS, Battley EH. Biological calorimetry and the thermodynamics of the origination and evolution of life. Pure Appl Chem 2009; 81: 1843-1855
  • 17 Sformo T, Walters K, Jeannet K. , et al. Deep supercooling, vitrification and limited survival to -100°C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 2010; 213 (03) 502-509
  • 18 Hengherr S, Schill RO, Clegg JS. Mechanisms associated with cellular desiccation tolerance in the animal extremophile artemia. Physiol Biochem Zool 2011; 84 (03) 249-257
  • 19 Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO. High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 2009; 82 (06) 749-755
  • 20 Shmakova L, Bondarenko N, Smirnov A. Viable species of Flamella (Amoebozoa: Variosea) isolated from ancient arctic permafrost sediments. Protist 2016; 167 (01) 13-30
  • 21 Shatilovich AV, Tchesunov AV, Neretina TV. , et al. Viable nematodes from late Pleistocene permafrost of the Kolyma river lowland. Dokl Biol Sci 2018; 480 (01) 100-102
  • 22 Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM. Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae . Eukaryot Cell 2004; 3 (04) 966-975
  • 23 Denekamp NY, Reinhardt R, Kube M, Lubzens E. Late embryogenesis abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biol Reprod 2010; 82 (04) 714-724
  • 24 Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem J 2005; 388 (Pt 1): 151-157
  • 25 Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 2011; 73: 115-134
  • 26 Menze MA, Boswell L, Toner M, Hand SC. Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 2009; 284 (16) 10714-10719
  • 27 Loutradi KE, Kolibianakis EM, Venetis CA. , et al. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril 2008; 90 (01) 186-193
  • 28 Balasubramanian SK, Wolkers WF, Bischof JC. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells. Biochim Biophys Acta 2009; 1788 (05) 945-953
  • 29 Wolfe J, Bryant G. Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology 1999; 39 (02) 103-129
  • 30 Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 2003; 40 (05) 481-495
  • 31 Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 2010; 22 (02) 263-268
  • 32 Baust JM, Vogel MJ, Van Buskirk R, Baust JG. A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transplant 2001; 10 (07) 561-571
  • 33 Baust JM, Corwin W, Snyder KK, VanBusik R, Baust JG. Cryopreservation: evolution of molecular based strategies. In: Karimi-Busheri F, Weinfeld M. , eds. Biobanking and Cryopreservation of Stem Cells, Advances in Experimental Medicine and Biology, Vol 951. Cham, Switzerland: Springer; 2016: 13-29
  • 34 Martin-Ibañez R, Unger C, Strömberg A, Baker D, Canals JM, Hovatta O. Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 2008; 23 (12) 2744-2754
  • 35 Li X, Krawetz R, Liu S, Meng G, Rancourt DE. ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 2009; 24 (03) 580-589
  • 36 Fan Y, Luo Y, Chen X, Sun X. A modified culture medium increases blastocyst formation and the efficiency of human embryonic stem cell derivation from poor-quality embryos. J Reprod Dev 2010; 56 (05) 533-539
  • 37 Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjöblom C. Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology 2018; 80: 70-76
  • 38 Aye M, Di Giorgio C, De Mo M, Botta A, Perrin J, Courbiere B. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem Toxicol 2010; 48 (07) 1905-1912
  • 39 Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology 2014; 81 (01) 24-37
  • 40 Wennerholm UB, Henningsen AK, Romundstad LB. , et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod 2013; 28 (09) 2545-2553
  • 41 Pinborg A, Henningsen AA, Loft A, Malchau SS, Forman J, Andersen AN. Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique?. Hum Reprod 2014; 29 (03) 618-627
  • 42 Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin Epigenetics 2017; 9: 14-23
  • 43 Shaw L, Sneddon SF, Brison DR, Kimber SJ. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos. Reproduction 2012; 144 (05) 569-582
  • 44 Roque M, Lattes K, Serra S. , et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril 2013; 99 (01) 156-162
  • 45 Maheshwari A, Pandey S, Amalraj Raja E, Shetty A, Hamilton M, Bhattacharya S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?. Hum Reprod Update 2018; 24 (01) 35-58
  • 46 Sha T, Yin X, Cheng W, Massey IY. Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis. Fertil Steril 2018; 109 (02) 330-342.e9
  • 47 Wong KM, van Wely M, Mol F, Repping S, Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. (Review) Cochrane Database Syst Rev 2017; 3: CD011184
  • 48 Lyon MF. Implications of freezing for the preservation of genetic stocks. In: Mühlbock O. , ed. Basic Aspects of Freeze Preservation of Mouse Strains. Stuttgart: Gustav Fischer Verlag; 1976: 57-65
  • 49 Whittingham DG. Embryo banks in the future of developmental genetics. Genetics 1974; 78 (01) 395-402
  • 50 Ashwood-Smith MJ, Grant E. Genetic stability in cellular systems stored in the frozen state. Ciba Found Symp 1977; 52 (52) 251-272
  • 51 Ashwood-Smith MJ. The radioprotective action of dimethyl sulphoxide and various other sulphoxides. Int J Radiat Biol Relat Stud Phys Chem Med 1961; 3: 41-48
  • 52 Ashwood-Smith MJ, Friedmann GB. Lethal and chromosomal effects of freezing, thawing, storage time, and x-irradiation on mammalian cells preserved at -196 degrees in dimethyl sulfoxide. Cryobiology 1979; 16 (02) 132-140
  • 53 Lyon MF, Whittingham DG, Glenister P. Long-term storage of frozen mouse embryos under increased background irradiation. Ciba Found Symp 1977; 52 (52) 273-290
  • 54 Lyon MF, Glenister PH, Whittingham DG. Long-term viability of embryos stored under irradiation. In: Zeilmaker, ed. Frozen Storage of Laboratory Animals. Stuttgart: Gustave Fischer Verlag; 1981: 139-147
  • 55 Glenister PH, Whittingham DG, Lyon MF. Further studies on the effect of radiation during the storage of frozen 8-cell mouse embryos at -196°C. J Reprod Fertil 1984; 70 (01) 229-234
  • 56 Yan J, Suzuki J, Yu XM, Qiao J, Kan FW, Chian RC. Effects of duration of cryo-storage of mouse oocytes on cryo-survival, fertilization and embryonic development following vitrification. J Assist Reprod Genet 2011; 28 (07) 643-649
  • 57 Ueno S, Uchiyama K, Kuroda T. , et al. Cryostorage duration does not affect pregnancy and neonatal outcomes: a retrospective single-centre cohort study of vitrified-warmed blastocysts. Reprod Biomed Online 2018; 36 (06) 614-619
  • 58 Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril 1984; 42 (02) 293-296
  • 59 Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf 1985; 2 (02) 59-64
  • 60 Cohen J, Inge KL, Wiker SR, Wright G, Fehilly CB, Turner Jr TG. Duration of storage of cryopreserved human embryos. J In Vitro Fert Embryo Transf 1988; 5 (05) 301-303
  • 61 Testart J, Lassalle B, Forman R. , et al. Factors influencing the success rate of human embryo freezing in an in vitro fertilization and embryo transfer program. Fertil Steril 1987; 48 (01) 107-112
  • 62 Riggs R, Mayer J, Dowling-Lacey D, Chi T-F, Jones E, Oehninger S. Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11,768 cryopreserved human embryos. Fertil Steril 2010; 93 (01) 109-115
  • 63 Aflatoonian N, Pourmasumi S, Aflatoonian A, Eftekhar M. Duration of storage does not influence pregnancy outcome in cryopreserved human embryos. Iran J Reprod Med 2013; 11 (10) 843-846
  • 64 Wirleitner B, Vanderzwalmen P, Bach M. , et al. The time aspect in storing vitrified blastocysts: its impact on survival rate, implantation potential and babies born. Hum Reprod 2013; 28 (11) 2950-2957
  • 65 Parmegiani L, Garello C, Granella F. , et al. Long-term cryostorage does not adversely affect the outcome of oocyte thawing cycles. Reprod Biomed Online 2009; 19 (03) 374-379
  • 66 Quintans CJ, Donaldson MJ, Urquiza MF. , et al. Live birth of twins after IVF of oocytes that were cryopreserved almost 12 years before. Reprod Biomed Online 2012; 25 (06) 600-602
  • 67 Urquiza MF, Carretero I, Cano Carabajal PR. , et al. Successful live birth from oocytes after more than 14 years of cryopreservation. J Assist Reprod Genet 2014; 31 (11) 1553-1555
  • 68 Dowling-Lacey D, Mayer JF, Jones E, Bocca S, Stadtmauer L, Oehninger S. Live birth from a frozen-thawed pronuclear stage embryo almost 20 years after its cryopreservation. Fertil Steril 2011; 95 (03) 1120.e1-1120.e3
  • 69 Pruksananonda K, Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Isarasena N, Virutamasen P. Eighteen-year cryopreservation does not negatively affect the pluripotency of human embryos: evidence from embryonic stem cell derivation. Biores Open Access 2012; 1 (04) 166-173
  • 70 Check JH, Summers-Chase D, Yuan W, Swenson K, Horwath D. Length of time of embryo storage does not negatively influence pregnancy rates after thawing and transfer. Clin Exp Obstet Gynecol 2010; 37 (03) 185-186
  • 71 Ducharme J. This 26-year-old woman had a baby from a frozen embryo only a year younger than her. Time Magazine 2017. Available at: http://time.com/5073437/tina-benjamin-gibson-frozen-embryo/ . Accessed September 4, 2018
  • 72 Mellinger M. New Record: East TN Woman gives birth to daughter who spent 24 years as a frozen embryo – Press Release. Standard Newswire 2017. Available at: http://www.standardnewswire.com/news/1848813372.html . Accessed September 4, 2018
  • 73 Edwards RG, Steptoe PC, Purdy JM. Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol 1980; 87 (09) 737-756