Thromb Haemost 1997; 77(05): 0849-0855
DOI: 10.1055/s-0038-1656066
Clinicla studies
Schattauer GmbH Stuttgart

Defective Interaction between von Willebrand Factor and Platelet Glycoprotein I b – A Familial Study of Peripheral Arterial Occlusive Disease

Petteri Kauhanen
The Wihuri Research Institute, Helsinki, Finland
,
Jürg H Beer
1   The Department of Internal Medicine, University Hospital, Laboratory for Thrombosis Research, Bern, Switzerland
,
Riitta Lassila
The Wihuri Research Institute, Helsinki, Finland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 03. Oktober 1996

Accepted after resubmission 10. Januar 1997

Publikationsdatum:
11. Juli 2018 (online)

Summary

Hemostatic variables and platelet function were assessed as a part of a genetic study in 15 patients with symptomatic peripheral arterial occlusive disease (PAOD) and 15 healthy siblings from ten families. D-dimer, a degradation product of cross-linked fibrin, was increased in the PAOD group (mean ± SD) (448 ± 177 vs. 333 ± 121 ng/ml, p <0.05). Ristocetin-induced maximal platelet aggregation (RIPA) was reduced in the PAOD group in response to both a higher (0.75 mg/ml) (67 ± 28 vs. 87 ± 14%, p = 0.02) and a lower (0.55 or 0.60 mg/ml) (33 ± 21 vs. 59 ± 32%, p = 0.02) concentration of ristocetin. Accordingly, the rate of primary aggregation was smaller, and a larger threshold concentration of ristocetin was needed to cause aggregation. However, ristocetin cofactor activity, von Willebrand factor (vWF) antigen and its multimer distribution, plasma glycocalicin, platelet glycoprotein lb content and the binding of vWF to frozen and thawed washed platelets were equal in both groups. Thus, the observed reduced RIPA in patients with PAOD is likely to reflect a down-regulation or blunted binding affinity in the platelet surface glycoprotein Ib.

 
  • References

  • 1 Gershlick AH. Are there markers of the blood-vessel wall interaction and of thrombus formation that can be used clinically?. Circulation 1990; 81 (Suppl. 01) I-28-I-34
  • 2 Abrams C, Shattil SJ. Immunological detection of activated platelets in clinical disorders. Thromb Haemost 1991; 65: 467-473
  • 3 Kestin AS, Valeri CR, Khuri SF, Loscalzo J, Ellis PA, MacGregor H, Birjiniuk V, Ouimet H, Pasche B, Nelson MJ, Benoit SE, Rodino LJ, Barnard MR, Michelson AD. The platelet function defect of cardiopulmonary bypass. Blood 1993; 82: 107-117
  • 4 Bauer KA. New markers for in vivo coagulation. Current Opin Hematol 1994; 1: 341-346
  • 5 Sixma JJ, Sakariassen KJ, Beeser-Visser NH, Ottenhof-Rovers M, Bolhuis PA. Adhesion of platelets to human artery subendothelium: effect of factor VUI-von Willebrand factor of various multimeric composition. Blood 1984; 63: 128-139
  • 6 Ruggeri ZM, Zimmerman TS. von Willebrand factor and von Willebrand disease. Blood 1987; 70: 895-904
  • 7 Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai Y, Watanabe K, Itagaki I, Sakai K, Ruggeri ZM. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 1991; 87: 1234-1240
  • 8 Meyer D, Girma J-P. von Willebrand factor: structure and function. A review. Thromb Haemost 1993; 70 (01) 099-104
  • 9 Jansson J-H, Nilsson TK, Johnson O. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br Heart J 1991; 66: 351-355
  • 10 Blann AD, Dobrotova M, Kubisz P, McCollum CN. von Willebrand factor, soluble P-selectin, tissue plasminogen activator and plasminogen activator inhibitor in atherosclerosis. Thromb Haemost 1995; 74: 626-630
  • 11 Fuster V, Griggs TR. Porcine von Willebrand factor: implications for the pathophysiology of atherosclerosis and thrombosis. In: Progress in hemostasis and thrombosis. Coller BS. ed. Grune & Stratton, Inc; Orlando, FL: 1986. 8. 159-83
  • 12 Nurden AT, Caen JP. Specific roles for platelet surface glycoproteins in platelet function. Nature 1975; 255: 720-722
  • 13 Nurden AT, Didry D, Rosa J-P. Molecular defects of platelets in Bemard-Soulier syndrome. Blood Cells 1983; 9: 333-53
  • 14 Coller BS, Gralnick HR. Studies on the mechanism of ristocetin-induced platelet agglutination: effects of structural modification of ristocetin and vancomycin. J Clin Invest 1977; 60: 302-312
  • 15 Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. von Willebrand factor binding to platelet Gplb initiates signals for platelet activation. J Clin Invest 1991; 88: 1568-1573
  • 16 Ruggeri ZM. The role of von Willebrand factor and fibrinogen in the initiation of platelet adhesion to thrombogenic surfaces. Thromb Haemost 1995; 74: 460-463
  • 17 Tsai H-M, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 1994; 83: 2171-2179
  • 18 Wicki AN, Clemetson KJ. Structure and function of platelet membrane glycoproteins lb and V: effects of leukocyte elastase and other proteases on platelet response to von Willebrand factor and thrombin. Eur J Biochem 1985; 153: 01-11
  • 19 Michelson AD, Ellis PA, Barnard MR, Matic GB, Viles AF, Kestin AS. Down-regulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, adenosine diphosphate, or an in vivo wound. Blood 1991; 77: 770-779
  • 20 Aziz KA, Cawley JC, Kamiguti AS, Zutel M. Degradation of platelet glycoprotein lb by elastase released from human neutrophils. Br J Haematol 1995; 91: 46-54
  • 21 Michelson AD, Barnard MR. Plasmin-induced redistribution of platelet glycoprotein lb. Blood 1990; 76: 2005-2010
  • 22 Lu H, Menashi S, Garcia I, Cramer EM, Li H, Tenza D, De RomeufC, Soria J, Soria C. Reversibility of thrombin-induced decrease in platelet glycoprotein lb function. Br J Haematol 1993; 85: 116-123
  • 23 Lassila R, Peltonen S, Lepäntalo M, Saarinen O, Kauhanen P, Manninen V. Severity of peripheral atherosclerosis is associated with fibrinogen and degradation of cross-linked fibrin. Arterioscler Thromb 1993; 13: 1738-1742
  • 24 Peltonen S, Lassila R, Rossi P, Salenius J-P, Lepäntalo M. Blood coagulation and fibrinolysis activation during sudden arterial occlusion of lower extremities – an association with ischemia and patient outcome. Thromb Haemost 1995; 76: 1442-1446
  • 25 Brinkhous KM, Read MS. Fixation platelets and platelet agglutination/aggregation tests. Methods in enzymology 1989; 169: 149-163
  • 26 Raines G, Aumann H, Sykes S, Street A. Multimeric analysis of von Willebrand factor by molecular sieving electrophoresis in sodium dodecyl sulphate agarose gel. Thromb Res 1990; 60: 201-212
  • 27 Bukh A, Ingersslev J, Stenbjerg S, Hundahl MøllerNP. The multimeric structure of plasma F VIII:RAg studied by electroelution and immuno-peroxidase detection. Thromb Res 1985; 43: 579-584
  • 28 Beer JH, Büchi L, Steiner B. Glycocalicin: a new assay – the normal plasma levels and its potential usefulness in selected diseases. Blood 1994; 83: 691-702
  • 29 Beer JH, Clerici N, Baillod P, von FeltenA, Schlappritzi E, Büchi L. Quantitative and qualitative analysis of platelet GP lb and von Willebrand factor in liver cirrhosis. Thromb Haemost 1995; 73: 601-609
  • 30 Mustonen P, Lassila R. Epinephrine augments platelet recruitment to immobilized collagen in flowing blood – evidence for a von Willebrand factor-mediated mechanism. Thromb Haemost 1996; 75: 175-181
  • 31 Bolton AE, Hunter WM. The labeling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochemistry 1973; 133: 529-539
  • 32 Gill JC, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69: 1691-1695
  • 33 Coller BS. von Willebrand Disease. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Second Edition Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. J.B. Lippincott Company; Philadelphia, PA: 1992. p 70
  • 34 Uchiyama S, Yamazaki M, Maruyama S, Handa M, Ikeda Y, Fukuyama M, Itagaki I. Shear-induced platelet aggregation in cerebral ischemia. Stroke 1994; 25: 1547-1551
  • 35 Pidard D, Renesto P, Berndt MC, Rabhi S, Clemetson KJ, Chignard M. Neutrophil proteinase cathepsin G is proteolytically active on the human platelet glycoprotein Ib-IX receptor: characterization of the cleavage sites within the glycoprotein lb alfa subunit. Biochem J 1994; 303: 489-498
  • 36 Amaro A, Gude F, Gonzales-Juanatey R, Iglesias C, Fernandez-Vazques F, Garcia-Acuna J, Gil M. Plasma leukocyte elastase concentration in angio-graphically diagnosed coronary artery disease. Eur Heart J 1995; 16: 615-622
  • 37 George NJ, Torres MM. Thrombin decreases von Willebrand factor binding to platelet glycoprotein lb. Blood 1988; 71: 1253-1259
  • 38 Michelson AD, Benoit SE, Kroll MH, Li J-M, Rohrer MJ, Kestin AS, Barnard MR. The activation-induced decrease in the platelet surface expression of the glycoprotein Ib-IX complex is reversible. Blood 1994; 83: 3562-3573
  • 39 Goodall AH, Knight CJ, Panesar M, Fox K. Abnormal platelet function in patients with stable coronary arterial disease. Abstract. Platelets 1996; 7: 82
  • 40 Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a metaanalysis and review of the literature. Ann Intern Med 1993; 118: 956-963
  • 41 Thompson SG, Kienast J, Pyke SDM, Haverkate F, van deLoo JCW. for the ECAT Angina Pectoris Study Group. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med 1995; 332: 635-641
  • 42 Fowkes FGR, Connor JM, Smith FB, Wood J, Donnan PT, Lowe GDO. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 1992; 339: 693-696
  • 43 Hauss WH, Bauch HJ, Schulte H. Adrenaline and noradrenaline as possible chemical mediators in the pathogenesis of arteriosclerosis. Ann NY Acad Sci 1990; 598: 091-101
  • 44 Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytemia. J Clin Invest 1966; 45: 645-657