Thromb Haemost 1996; 76(06): 0944-0949
DOI: 10.1055/s-0038-1650690
Original Article
Schattauer GmbH Stuttgart

Influence of Sialic Acid on Erythrocyte Aggregation in Hypercholesterolemi

A Hadengue
1   The Centre de Médecine Préventive Cardio-Vasculaire CRI (INSERM), Hôpital Broussais, Paris, France
,
S M Razavian
2   Department of Physiology, University of South California, Los Angeles, USA
,
M Del-Pino
1   The Centre de Médecine Préventive Cardio-Vasculaire CRI (INSERM), Hôpital Broussais, Paris, France
,
A Simon
1   The Centre de Médecine Préventive Cardio-Vasculaire CRI (INSERM), Hôpital Broussais, Paris, France
,
J Levenson
1   The Centre de Médecine Préventive Cardio-Vasculaire CRI (INSERM), Hôpital Broussais, Paris, France
› Author Affiliations
Further Information

Publication History

Received 29 April 1996

Accepted after resubmission 19 August 1996

Publication Date:
11 July 2018 (online)

Summary

The respective role of adhesive forces induced by fibrinogen and repulsive forces induced by erythrocyte sialic acid content on erythrocyte aggregation, was investigated in hypercholesterolemic and control subjects. Aggregation index (AI) and disaggregation shear rate threshold (³t) were determined in the presence of either autologous plasma or dextran. Compared with controls, fibrinogen (p <0.001) and aggregation parameters (AI p <0.01; ³t p <0.01) were higher in hypercholester-olemics while erythrocyte sialic acid content (p <0.001) was lower; in addition total serum sialic acid was increased (p <0.01). The aggregation properties of erythrocytes, independent of plasma environment using dextran as a bridging macromolecule, showed an enhanced disaggregation shear rate threshold and an inverse relationship with erythrocyte sialic acid content. We conclude that decreased erythrocyte sialic acid content may intensify the effect of fibrinogen on aggregation and disaggregation of erythrocytes and participate in the development of atherothrombotic complications.

 
  • References

  • 1 Chien S. Haemorheology in disease: Pathophysiological significance and therapeutic implications. Clin Hemorheol 1981; 1: 419-442
  • 2 Chien S, Jan KM. Red cell aggregation by macromolecules: role of surface adsorption and electrostatic repulsion. J Sup Structure 1973; 1: 419-442
  • 3 Jan KM. Red cell interactions in macromolecules suspension. Biorheology 1979; 16: 137-148
  • 4 Razavian SM, Del-Pino M, Simon A, Levenson J. Increase in erythrocyte disaggregation shear stress in hypertension. Hypertension 1992; 20: 247-252
  • 5 Vayá A, Martínez M, Carmena R, Aznar J. Red blood cell aggregation and primary hyperlipoproteinemia. Thromb Res 1993; 72: 119-126
  • 6 Razavian SM, Atger V, Giral Ph, Cambillau M, Del-Pino M, Simon A, Moatti N, Levenson J. the PCVMETRA group Influence of HDL subfractions on erythrocyte aggregation in hypercholesterolemic men. Arterioscler Thromb 1994; 14: 361-366
  • 7 Rainer C, Kawanishi DT, Chandraratna PAN, Bauersachs RM, Reid CL, Rahimtoola SH, Meiselman HJ. Changes in blood rheology in patients with stable angina pectoris as a result of coronary artery disease. Circulation 1987; 76: 15-20
  • 8 Chien S. Blood rheology in myocardial infarction and hypertension. Biorheology 1986; 23: 633-653
  • 9 Laprevote-Heully MC, Larcan A, Bollaert PE, Muller S, Donner M, Streiff F, Stoltz JF. Hemorheological disturbances during thromboembolic states and various attacks. Clin Hemorheol 1987; 7: 123-130
  • 10 Chabanel A, Glacet Bernard A, Lelong F, Taccoen A, Coscas G. Increased red blood cell aggregation in retinal vein occlusion. Br J Haematol 1990; 75: 127-131
  • 11 Simon E, Razavian SM, Le Beyec J, Atger V, Paul JL, Simon A, Moatti N, Levenson J. Influence of lipoprotein subfractions on dextran-and fibrinogen-induced erythrocyte aggregation. Clin Hemorheol 1995; 15: 667-676
  • 12 Huy DY, Harmony JAK. Interaction of plasma lipoproteins with erythrocytes. I Alteration of erythrocyte morphology. Biochim Biophys Acta 1979; 550: 407-424
  • 13 Huy DY, Harmony JAK. Interaction of plasma lipoproteins with erythrocytes. II Modulation of membrane-associated enzymes. Biochim Biophys Acta 1979; 550: 425-434
  • 14 Maeda N, Imaizumi K, Sekiya M, Shiga T. Rheological characteristics of desialylated erythrocytes in relation to fibrinogen-induced aggregation. Biochim Biophys Acta 1984; 776: 151-158
  • 15 Rampling MW, Pearson MJ. Enzymatic degradation of red cell surface and its effect on rouleaux formation. Clin Hemorheol 1994; 14: 531-538
  • 16 Evans E, Kukan B. Free energy potential for aggregation of erythrocytes and phosphatidylcholine/phosphatidylserine vesicles in dextran (36,5 MW) solutions and in plasma. Biophys J 1983; 44: 255-260
  • 17 Böhler T, Linderkamp O. Effects of neuraminidase and trypsin on surface charge and aggregation of red blood cells. Clin Hemorheol 1993; 13: 775-778
  • 18 Sugahara K, Sugimoto K, Nomura O, Usui T. Enzymatic assay of serum sialic acid. Clin Chim Acta 1980; 108: 493-498
  • 19 Braford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 20 Stein EA. Nutrition. In: Fundamentals of Clinical Chemistry Tietz NW. ed. Philadelphia, Pa: WB Saunders Co; 1987: 471-472
  • 21 Assmann C, Schriewer H, Schmitz G, Hagele E. Quantification of high-density lipoprotein cholesterol by precipitation with phosphotungstic acid (MgCl2). Clin Chem 1983; 29: 2025
  • 22 Shiga T, Maeda N. Fibrinogen and erythrocyte aggregation-In vitro kinetic study on various factors. In: Fibrinogen: a “new” Cardiovascular Risk Factor Ernst E, Koenig W, Lowe GDD, Meade TW. (eds) Wien: Blackwell-MZV: 1992: 55-58
  • 23 Maeda N, Seike M, Kume S, Takaku T, Shiga T. Fibrinogen-induced erythrocyte aggregation: erythrocyte binding site in the fibrinogen molecule. Biochim Biophys Acta 1990; 1022: 72-78
  • 24 Razavian SM, Atger V, Amar J, Cambillau M, Del-Pino M, Simon A, Moatti N, Levenson J. and the PCVMETRA group Influence of fibrinogen and HDL-Cholesterol on erythrocyte aggregation in hypercholesterolemic subjects. In: Fibrinogen: a “new” Cardiovascular Risk Factor Ernst E, Koenig W, Lowe GDD, Meade TW. (eds). Wien: Blackwell-MZV: 1992: 273-276
  • 25 Sadoshima S, Tanaka E. Fibrinogen and low density lipoprotein in the development of cerebral atherosclerosis. Atherosclerosis 1979; 34: 93-103
  • 26 Smith EB, Alexander KM, Massie IB. Insoluble “fibrin” in human aortic in-tima: quantitative studies on the relationship between insoluble “fibrin”, soluble fibrinogen and low-density lipoprotein. Atherosclerosis 1976; 23: 19-39
  • 27 Smith EB, Staples EM, Dietz HS, Smith RH. Role of the endothelium in sequestration of lipoprotein and fibrinogen in aortic lesions, thrombi, and graft pseudo-intimas. Lancet 1979; 2: 812-816
  • 28 Ernst E, Resch KL. Fibrinogen as a cardiovacular risk factor: a meta analysis and review of the literature. Ann Int Med 1993; 118: 956-963
  • 29 Levenson J, Giral Ph, Razavian SM, Gariepy J, Simon A. Fibrinogen and silent atherosclerosis in subjects with cardiovascular risk factors. Arterioscler Thromb Vase Biol 1995; 15: 1263-1268
  • 30 Maeda N, Seike M, Nakajima T, Izumida Y, Sekiya M, Shiga T. Contribution of glycoproteins to fibrinogen-induced aggregation of erythrocytes. Biochim Biophys Acta 1990; 1022: 72-78
  • 31 Snabre P, Mills P. Rôle des interactions électrostatiques dans le phénomène d’agrégation érythrocytaire. In: Hémorhéologie et agrégation érythro-cytaire, Premier symposium, coordonnateur Stoltz JF, Med Int. Eds Geneve: 1986. 1 98-110
  • 32 Solis D, Diáz-Mauriño T. Does fibrinogen contain populations with different degree of sialylation?. Thromb Res 1992; 67: 631-641
  • 33 Hager K, Feigl S, Platt D. Age dependency of the sialic acid content of fibrinogen. Consequences for erythrocyte aggregation. Arch Gerontol Geriatr 1991; 12: 25-30
  • 34 Crook M, Tuut P. Serum sialic acid concentration in patients with hyper-triglyceridaemia showing the Frederickson“s IIB phenotype. Clin Sci 1992; 83: 593-595
  • 35 Wakabayashi I, Sakamoto K, Yoshimoto S, Masui H. Relation of serum sialic acid to lipid concentrations. BMJ 1992; 305: 562-563
  • 36 Allain P, Olivier E, Le Bouil A, Benoit C, Geslin P, Tadei A. Augmentation de la concentration d’acide sialique dans le plasma de malades atteints de coronaropathies. Presse Med 1996; 25: 96-98
  • 37 Lindberg G, Eklund GA, Gulberg B, Rastam L. Serum sialic acid concentration and cardiovascular mortality. BMJ 1991; 302: 143-146
  • 38 Chiarini A, Fiorilli A, Di Francesco L, Venerando B, Tettamenti G. Human erythrocyte sialidase is linked to the plasma membrane by a glycosylphos-phatidylinositol anchor and partly located on the outer surface. Glycoconju-gate Journal 1993; 10: 64-71
  • 39 Chien S, Simchon S, Abott R, Jan KM. Surface adsorption of dextrans on human red cell membrane. Journal of colloid and interface science 1977; 62: 461-470
  • 40 Snabre P, Mills P. Effect of dextran polymer on glycocalyx structure and cell electrophoretic mobility. Colloid & Polymer Sci 1985; 263: 494-500