Int J Angiol 2018; 27(02): 098-109
DOI: 10.1055/s-0038-1649512
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neuroprotective Strategies in Repair and Replacement of the Aortic Arch

Frank Manetta
1   Department of Cardiovascular and Thoracic Surgery, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
,
Clancy W. Mullan
1   Department of Cardiovascular and Thoracic Surgery, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
,
Michael A. Catalano
1   Department of Cardiovascular and Thoracic Surgery, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
27 May 2018 (online)

Abstract

Aortic arch surgery is a technical challenge, and cerebral protection during distal anastomosis is a continued topic of controversy and discussion. The physiologic effects of hypothermic arrest and adjunctive cerebral perfusion have yet to be fully defined, and the optimal strategies are still undetermined. This review highlights the historical context, physiological rationale, and clinical efficacy of various neuroprotective strategies during arch operations.

 
  • References

  • 1 Settepani F, Cappai A, Basciu A, Barbone A, Tarelli G. Outcome of open total arch replacement in the modern era. J Vasc Surg 2016; 63 (02) 537-545
  • 2 McKhann GM, Grega MA, Borowicz Jr LM. , et al. Encephalopathy and stroke after coronary artery bypass grafting: incidence, consequences, and prediction. Arch Neurol 2002; 59 (09) 1422-1428
  • 3 Roach GW, Kanchuger M, Mangano CM. , et al; Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med 1996; 335 (25) 1857-1863
  • 4 Wolman RL, Nussmeier NA, Aggarwal A. , et al. Cerebral injury after cardiac surgery: identification of a group at extraordinary risk. Multicenter Study of Perioperative Ischemia Research Group (McSPI) and the Ischemia Research Education Foundation (IREF) Investigators. Stroke 1999; 30 (03) 514-522
  • 5 Hogue CW, Gottesman RF, Stearns J. Mechanisms of cerebral injury from cardiac surgery. Crit Care Clin 2008; 24 (01) 83-98 , viii–ix
  • 6 Harrington DK, Fragomeni F, Bonser RS. Cerebral perfusion. Ann Thorac Surg 2007; 83 (02) S799-S804 , discussion S824–S831
  • 7 Clarke DD, Sokoloff L. In: Siegel GJ. , ed. Basic neurochemistry molecular, cellular, and medical aspects. Lippincott Williams & Wilkins; 1999: 637-670
  • 8 Mavroudis CD, Karlsson M, Ko T. , et al. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Eur J Cardiothorac Surg 2018; DOI: 10.1093/ejcts/ezx467.
  • 9 Zhu H, Cottrell JE, Kass IS. The effect of thiopental and propofol on NMDA- and AMPA-mediated glutamate excitotoxicity. Anesthesiology 1997; 87 (04) 944-951
  • 10 González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol 2011; 2: 4
  • 11 Baumgartner WA, Redmond M, Brock M. , et al. Pathophysiology of cerebral injury and future management. J Card Surg 1997; 12 (2, Suppl) 300-310 , discussion 310–311
  • 12 Redmond JM, Gillinov AM, Zehr KJ. , et al. Glutamate excitotoxicity: a mechanism of neurologic injury associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1994; 107 (03) 776-786 , discussion 786–787
  • 13 Dewhurst AT, Moore SJ, Liban JB. Pharmacological agents as cerebral protectants during deep hypothermic circulatory arrest in adult thoracic aortic surgery. A survey of current practice. Anaesthesia 2002; 57 (10) 1016-1021
  • 14 Bergeron EJ, Mosca MS, Aftab M, Justison G, Reece TB. Neuroprotection strategies in aortic surgery. Cardiol Clin 2017; 35 (03) 453-465
  • 15 Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology 1973; 39 (05) 510-517
  • 16 Zaidan JR, Klochany A, Martin WM, Ziegler JS, Harless DM, Andrews RB. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 1991; 74 (03) 406-411
  • 17 Al-Hashimi S, Zaman M, Waterworth P, Bilal H. Does the use of thiopental provide added cerebral protection during deep hypothermic circulatory arrest?. Interact Cardiovasc Thorac Surg 2013; 17 (02) 392-397
  • 18 Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 2000; 69 (05) 1490-1495
  • 19 Kawamura T, Inada K, Nara N, Wakusawa R, Endo S. Influence of methylprednisolone on cytokine balance during cardiac surgery. Crit Care Med 1999; 27 (03) 545-548
  • 20 Shum-Tim D, Tchervenkov CI, Jamal AM. , et al. Systemic steroid pretreatment improves cerebral protection after circulatory arrest. Ann Thorac Surg 2001; 72 (05) 1465-1471 , discussion 1471–1472
  • 21 Langley SM, Chai PJ, Jaggers JJ, Ungerleider RM. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 2000; 17 (03) 279-286
  • 22 Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2011; (09) CD000064
  • 23 Wass CT, Scheithauer BW, Bronk JT, Wilson RM, Lanier WL. Insulin treatment of corticosteroid-associated hyperglycemia and its effect on outcome after forebrain ischemia in rats. Anesthesiology 1996; 84 (03) 644-651
  • 24 Sano T, Drummond JC, Patel PM, Grafe MR, Watson JC, Cole DJ. A comparison of the cerebral protective effects of isoflurane and mild hypothermia in a model of incomplete forebrain ischemia in the rat. Anesthesiology 1992; 76 (02) 221-228
  • 25 Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 2005; 103 (03) 532-539
  • 26 Park H-P, Jeong E-J, Kim M-H. , et al. Effects of sevoflurane on neuronal cell damage after severe cerebral ischemia in rats. Korean J Anesthesiol 2011; 61 (04) 327-331
  • 27 Kurth CD, Priestley M, Watzman HM, McCann J, Golden J. Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs. Anesthesiology 2001; 95 (04) 959-964
  • 28 Deng J, Lei C, Chen Y. , et al. Neuroprotective gases--fantasy or reality for clinical use?. Prog Neurobiol 2014; 115: 210-245
  • 29 Zwerus R, Absalom A. Update on anesthetic neuroprotection. Curr Opin Anaesthesiol 2015; 28 (04) 424-430
  • 30 Mahajan C, Chouhan RS, Rath GP. , et al. Effect of intraoperative brain protection with propofol on postoperative cognition in patients undergoing temporary clipping during intracranial aneurysm surgery. Neurol India 2014; 62 (03) 262-268
  • 31 Mitchell SJ. Lidocaine in the treatment of decompression illness: a review of the literature. Undersea Hyperb Med 2001; 28 (03) 165-174
  • 32 Mitchell SJ, Pellett O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg 1999; 67 (04) 1117-1124
  • 33 Wang D, Wu X, Li J, Xiao F, Liu X, Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg 2002; 95 (05) 1134-1141
  • 34 Mitchell SJ, Merry AF, Frampton C. , et al. Cerebral protection by lidocaine during cardiac operations: a follow-up study. Ann Thorac Surg 2009; 87 (03) 820-825
  • 35 Fawcett WJ, Haxby EJ, Male DA. Magnesium: physiology and pharmacology. Br J Anaesth 1999; 83 (02) 302-320
  • 36 Chang JJ, Mack WJ, Saver JL, Sanossian N. Magnesium: potential roles in neurovascular disease. Front Neurol 2014; 5: 52
  • 37 Bhudia SK, Cosgrove DM, Naugle RI. , et al. Magnesium as a neuroprotectant in cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg 2006; 131 (04) 853-861
  • 38 Mathew JP, White WD, Schinderle DB. , et al; Neurologic Outcome Research Group (NORG) of The Duke Heart Center. Intraoperative magnesium administration does not improve neurocognitive function after cardiac surgery. Stroke 2013; 44 (12) 3407-3413
  • 39 Krüger T, Hoffmann I, Blettner M, Borger MA, Schlensak C, Weigang E. ; GERAADA Investigators. Intraoperative neuroprotective drugs without beneficial effects? Results of the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur J Cardiothorac Surg 2013; 44 (05) 939-946
  • 40 Lewis FJ, Taufic M. Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments and the report of one successful case. Surgery 1953; 33 (01) 52-59
  • 41 Livesay JJ, Messner GN, Vaughn WK. Milestones in the treatment of aortic aneurysm: Denton A. Cooley, MD, and the Texas Heart Institute. Tex Heart Inst J 2005; 32 (02) 130-134
  • 42 Griepp RB, Stinson EB, Hollingsworth JF, Buehler D. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg 1975; 70 (06) 1051-1063
  • 43 Karaskov A, Litasova E, Vlasov Y. A documentary on the life and work of Eugenij Nikolaevich Meshalkin. Circ Pathol Cardiac Surg 1999; 1: 4-11
  • 44 Lomivorotov V. Hypothermic brain protection in cardiac surgery [in Russian] (special edition for the International Congress “Heart-Brain”). Circ Pathol Cardiac Surg 2010; 3: 1-4
  • 45 Svensson LG, Crawford ES. Cardiovascular and Vascular Disease of the Aorta. PA, USA: WB Saunders Company; 1997
  • 46 Mezrow CK, Sadeghi AM, Gandsas A. , et al. Cerebral blood flow and metabolism in hypothermic circulatory arrest. Ann Thorac Surg 1992; 54 (04) 609-615 , discussion 615–616
  • 47 Haverich A, Hagl C. Organ protection during hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2003; 125 (03) 460-462
  • 48 McCullough JN, Zhang N, Reich DL. , et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 1999; 67 (06) 1895-1899 , discussion 1919–1921
  • 49 Stecker MM, Cheung AT, Pochettino A. , et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg 2001; 71 (01) 14-21
  • 50 Griepp EB, Griepp RB. Cerebral consequences of hypothermic circulatory arrest in adults. J Card Surg 1992; 7 (02) 134-155
  • 51 Griepp RB, Ergin MA, Lansman SL, Galla JD, Pogo G. The physiology of hypothermic circulatory arrest. Semin Thorac Cardiovasc Surg 1991; 3 (03) 188-193
  • 52 Shin'oka T, Shum-Tim D, Jonas RA. , et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1996; 112 (06) 1610-1620 , discussion 1620–1621
  • 53 Duebener LF, Sakamoto T, Hatsuoka S. , et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 2001; 104 (12) (Suppl. 01) I260-I264
  • 54 Stadie WC, Austin JH, Robinson HW. The effect of temperature on the acid-base-protein equilibrium and its influence on the CO2 absorption curve of whole blood, true and separated serum. J Biol Chem 1925; 66 (02) 901-920
  • 55 Althaus U, Aeberhard P, Schüpbach P, Nachbur BH, Mühlemann W. Management of profound accidental hypothermia with cardiorespiratory arrest. Ann Surg 1982; 195 (04) 492-495
  • 56 Niazi SA, Lewis FJ. Profound hypothermia in man; report of a case. Ann Surg 1958; 147 (02) 264-266
  • 57 Yan TD, Bannon PG, Bavaria J. , et al. Consensus on hypothermia in aortic arch surgery. Ann Cardiothorac Surg 2013; 2 (02) 163-168
  • 58 Reich DL, Uysal S, Sliwinski M. , et al. Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg 1999; 117 (01) 156-163
  • 59 Ergin MA, Uysal S, Reich DL. , et al. Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg 1999; 67 (06) 1887-1890 , discussion 1891–1894
  • 60 Svensson LG, Crawford ES, Hess KR. , et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg 1993; 106 (01) 19-28 , discussion 28–31
  • 61 Mezrow CK, Gandsas A, Sadeghi AM. , et al. Metabolic correlates of neurologic and behavioral injury after prolonged hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1995; 109 (05) 959-975
  • 62 Czerny M, Fleck T, Zimpfer D. , et al. Risk factors of mortality and permanent neurologic injury in patients undergoing ascending aortic and arch repair. J Thorac Cardiovasc Surg 2003; 126 (05) 1296-1301
  • 63 Gega A, Rizzo JA, Johnson MH, Tranquilli M, Farkas EA, Elefteriades JA. Straight deep hypothermic arrest: experience in 394 patients supports its effectiveness as a sole means of brain preservation. Ann Thorac Surg 2007; 84 (03) 759-766 , discussion 766–767
  • 64 Percy A, Widman S, Rizzo JA, Tranquilli M, Elefteriades JA. Deep hypothermic circulatory arrest in patients with high cognitive needs: full preservation of cognitive abilities. Ann Thorac Surg 2009; 87 (01) 117-123
  • 65 Likosky DS, Marrin CAS, Caplan LR. , et al; Northern New England Cardiovascular Disease Study Group. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery. Stroke 2003; 34 (12) 2830-2834
  • 66 Okita Y, Takamoto S, Ando M, Morota T, Matsukawa R, Kawashima Y. Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: no relation of early death, stroke, and delirium to the duration of circulatory arrest. J Thorac Cardiovasc Surg 1998; 115 (01) 129-138
  • 67 Hagl C, Ergin MA, Galla JD. , et al. Neurologic outcome after ascending aorta-aortic arch operations: effect of brain protection technique in high-risk patients. J Thorac Cardiovasc Surg 2001; 121 (06) 1107-1121
  • 68 Ergin MA, Griepp EB, Lansman SL, Galla JD, Levy M, Griepp RB. Hypothermic circulatory arrest and other methods of cerebral protection during operations on the thoracic aorta. J Card Surg 1994; 9 (05) 525-537
  • 69 Stein LH, Elefteriades JA. Protecting the brain during aortic surgery: an enduring debate with unanswered questions. J Cardiothorac Vasc Anesth 2010; 24 (02) 316-321
  • 70 Reich DL, Uysal S, Ergin MA, Griepp RB. Retrograde cerebral perfusion as a method of neuroprotection during thoracic aortic surgery. Ann Thorac Surg 2001; 72 (05) 1774-1782
  • 71 Usui A, Oohara K, Liu TL. , et al. Determination of optimum retrograde cerebral perfusion conditions. J Thorac Cardiovasc Surg 1994; 107 (01) 300-308
  • 72 Wong CH, Bonser RS. Retrograde cerebral perfusion: clinical and experimental aspects. Perfusion 1999; 14 (04) 247-256
  • 73 Ye J, Yang L, Del Bigio MR. , et al. Neuronal damage after hypothermic circulatory arrest and retrograde cerebral perfusion in the pig. Ann Thorac Surg 1996; 61 (05) 1316-1322
  • 74 Deeb GM, Jenkins E, Bolling SF. , et al. Retrograde cerebral perfusion during hypothermic circulatory arrest reduces neurologic morbidity. J Thorac Cardiovasc Surg 1995; 109 (02) 259-268
  • 75 Girardi LN, Shavladze N, Sedrakyan A, Neragi-Miandoab S. Safety and efficacy of retrograde cerebral perfusion as an adjunct for cerebral protection during surgery on the aortic arch. J Thorac Cardiovasc Surg 2014; 148 (06) 2927-2933
  • 76 Ueda Y, Okita Y, Aomi S, Koyanagi H, Takamoto S. Retrograde cerebral perfusion for aortic arch surgery: analysis of risk factors. Ann Thorac Surg 1999; 67 (06) 1879-1882 , discussion 1891–1894
  • 77 Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg 2001; 72 (01) 72-79
  • 78 Harrington DK, Bonser M, Moss A, Heafield MT, Riddoch MJ, Bonser RS. Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg 2003; 126 (03) 638-644
  • 79 Moon MR, Sundt TM. Influence of retrograde cerebral perfusion during aortic arch procedures. Ann Thorac Surg 2002; 74 (02) 426-431 ; discussion 431
  • 80 Boeckxstaens CJ, Flameng WJ. Retrograde cerebral perfusion does not perfuse the brain in nonhuman primates. Ann Thorac Surg 1995; 60 (02) 319-327 , discussion 327–328
  • 81 Mohri H, Sadahiro M, Akimoto H, Haneda K, Tabayashi K, Ohmi M. Protection of the brain during hypothermic perfusion. Ann Thorac Surg 1993; 56 (06) 1493-1496
  • 82 Estrera AL, Garami Z, Miller III CC. , et al. Determination of cerebral blood flow dynamics during retrograde cerebral perfusion using power M-mode transcranial Doppler. Ann Thorac Surg 2003; 76 (03) 704-709 , discussion 709–710
  • 83 Cooley DA, De Bakey ME. Resection of entire ascending aorta in fusiform aneurysm using cardiac bypass. J Am Med Assoc 1956; 162 (12) 1158-1159
  • 84 Tanoue Y, Tominaga R, Ochiai Y. , et al. Comparative study of retrograde and selective cerebral perfusion with transcranial Doppler. Ann Thorac Surg 1999; 67 (03) 672-675
  • 85 Okita Y, Miyata H, Motomura N, Takamoto S. ; Japan Cardiovascular Surgery Database Organization. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion: analysis based on the Japan Adult Cardiovascular Surgery Database. J Thorac Cardiovasc Surg 2015; 149 (2, Suppl): S65-S73
  • 86 Guo S, Sun Y, Ji B, Liu J, Wang G, Zheng Z. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery: a meta-analysis of 7023 patients. Artif Organs 2015; 39 (04) 300-308
  • 87 Elmistekawy EM, Rubens FD. Deep hypothermic circulatory arrest: alternative strategies for cerebral perfusion. A review article. Perfusion 2011; 26 (Suppl. 01) 27-34
  • 88 Svyatets M, Tolani K, Zhang M, Tulman G, Charchaflieh J. Perioperative management of deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth 2010; 24 (04) 644-655
  • 89 Merkkola P, Tulla H, Ronkainen A. , et al. Incomplete circle of Willis and right axillary artery perfusion. Ann Thorac Surg 2006; 82 (01) 74-79
  • 90 Weinberg PM. Aortic arch anomalies. J Cardiovasc Magn Reson 2006; 8 (04) 633-643
  • 91 Angeloni E, Benedetto U, Takkenberg JJ. , et al. Unilateral versus bilateral antegrade cerebral protection during circulatory arrest in aortic surgery: a meta-analysis of 5100 patients. J Thorac Cardiovasc Surg 2014; 147 (01) 60-67
  • 92 Zierer A, Detho F, Dzemali O, Aybek T, Moritz A, Bakhtiary F. Antegrade cerebral perfusion with mild hypothermia for aortic arch replacement: single-center experience in 245 consecutive patients. Ann Thorac Surg 2011; 91 (06) 1868-1873
  • 93 Kazui T, Washiyama N, Muhammad BA. , et al. Total arch replacement using aortic arch branched grafts with the aid of antegrade selective cerebral perfusion. Ann Thorac Surg 2000; 70 (01) 3-8 , discussion 8–9
  • 94 Minakawa M, Fukuda I, Yamauchi S. , et al. Early and long-term outcome of total arch replacement using selective cerebral perfusion. Ann Thorac Surg 2010; 90 (01) 72-77
  • 95 Malvindi PG, Scrascia G, Vitale N. Is unilateral antegrade cerebral perfusion equivalent to bilateral cerebral perfusion for patients undergoing aortic arch surgery?. Interact Cardiovasc Thorac Surg 2008; 7 (05) 891-897
  • 96 Luehr M, Bachet J, Mohr F-W, Etz CD. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. Eur J Cardiothorac Surg 2014; 45 (01) 27-39
  • 97 Tsai JY, Pan W, Lemaire SA. , et al. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. J Thorac Cardiovasc Surg 2013; 146 (03) 662-667
  • 98 Panos A, Murith N, Bednarkiewicz M, Khatchatourov G. Axillary cerebral perfusion for arch surgery in acute type A dissection under moderate hypothermia. Eur J Cardiothorac Surg 2006; 29 (06) 1036-1039
  • 99 Pacini D, Di Marco L, Leone A. , et al. Antegrade selective cerebral perfusion and moderate hypothermia in aortic arch surgery: clinical outcomes in elderly patients. Eur J Cardiothorac Surg 2012; 42 (02) 249-253 , discussion 253
  • 100 Kamiya H, Hagl C, Kropivnitskaya I. , et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. J Thorac Cardiovasc Surg 2007; 133 (02) 501-509
  • 101 Leshnower BG, Myung RJ, Thourani VH. , et al. Hemiarch replacement at 28°C: an analysis of mild and moderate hypothermia in 500 patients. Ann Thorac Surg 2012; 93 (06) 1910-1915 , discussion 1915–1916
  • 102 Leshnower BG, Kilgo PD, Chen EP. Total arch replacement using moderate hypothermic circulatory arrest and unilateral selective antegrade cerebral perfusion. J Thorac Cardiovasc Surg 2014; 147 (05) 1488-1492
  • 103 El-Sayed Ahmad A, Papadopoulos N, Risteski P, Moritz A, Zierer A. The standardized concept of moderate-to-mild (≥28°C) systemic hypothermia during selective antegrade cerebral perfusion for all-comers in aortic arch surgery: single-center experience in 587 consecutive patients over a 15-year period. Ann Thorac Surg 2017; 104 (01) 49-55
  • 104 Etz CD, Luehr M, Kari FA. , et al. Selective cerebral perfusion at 28 degrees C--is the spinal cord safe?. Eur J Cardiothorac Surg 2009; 36 (06) 946-955
  • 105 Strauch JT, Lauten A, Spielvogel D. , et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg 2004; 25 (05) 708-715
  • 106 Khaladj N, Peterss S, Pichlmaier M. , et al. The impact of deep and moderate body temperatures on end-organ function during hypothermic circulatory arrest. Eur J Cardiothorac Surg 2011; 40 (06) 1492-1499 , discussion 1499
  • 107 Haldenwang PL, Klein T, Neef K. , et al. Evaluation of the use of lower body perfusion at 28°C in aortic arch surgery. Eur J Cardiothorac Surg 2012; 41 (05) e100-e108 , discussion e108–e109
  • 108 Arnaoutakis GJ, Vallabhajosyula P, Bavaria JE. , et al. The impact of deep versus moderate hypothermia on postoperative kidney function after elective aortic hemiarch repair. Ann Thorac Surg 2016; 102 (04) 1313-1321
  • 109 Numata S, Tsutsumi Y, Monta O. , et al. Aortic arch repair with antegrade selective cerebral perfusion using mild to moderate hypothermia of more than 28°C. Ann Thorac Surg 2012; 94 (01) 90-95 , discussion 95–96
  • 110 Leshnower BG, Thourani VH, Halkos ME. , et al. Moderate versus deep hypothermia with unilateral selective antegrade cerebral perfusion for acute type A dissection. Ann Thorac Surg 2015; 100 (05) 1563-1568 , discussion 1568–1569
  • 111 Urbanski PP, Lenos A, Bougioukakis P, Neophytou I, Zacher M, Diegeler A. Mild-to-moderate hypothermia in aortic arch surgery using circulatory arrest: a change of paradigm?. Eur J Cardiothorac Surg 2012; 41 (01) 185-191
  • 112 Poon SS, Estrera A, Oo A, Field M. Is moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion superior to deep hypothermic circulatory arrest in elective aortic arch surgery?. Interact Cardiovasc Thorac Surg 2016; 23 (03) 462-468
  • 113 Westaby S, Katsumata T, Vaccari G. Arch and descending aortic aneurysms: influence of perfusion technique on neurological outcome. Eur J Cardiothorac Surg 1999; 15 (02) 180-185
  • 114 Khaladj N, Shrestha M, Meck S. , et al. Hypothermic circulatory arrest with selective antegrade cerebral perfusion in ascending aortic and aortic arch surgery: a risk factor analysis for adverse outcome in 501 patients. J Thorac Cardiovasc Surg 2008; 135 (04) 908-914
  • 115 Benedetto U, Raja SG, Amrani M. , et al. The impact of arterial cannulation strategy on operative outcomes in aortic surgery: evidence from a comprehensive meta-analysis of comparative studies on 4476 patients. J Thorac Cardiovasc Surg 2014; 148 (06) 2936-43.e1 , 4
  • 116 Etz CD, Plestis KA, Kari FA. , et al. Axillary cannulation significantly improves survival and neurologic outcome after atherosclerotic aneurysm repair of the aortic root and ascending aorta. Ann Thorac Surg 2008; 86 (02) 441-446 , discussion 446–447
  • 117 Benedetto U, Mohamed H, Vitulli P, Petrou M. Axillary versus femoral arterial cannulation in type A acute aortic dissection: evidence from a meta-analysis of comparative studies and adjusted risk estimates. Eur J Cardiothorac Surg 2015; 48 (06) 953-959
  • 118 Lakew F, Pasek P, Zacher M, Diegeler A, Urbanski PP. Femoral versus aortic cannulation for surgery of chronic ascending aortic aneurysm. Ann Thorac Surg 2005; 80 (01) 84-88
  • 119 Tsiouris A, Elkinany S, Ziganshin BA, Elefteriades JA. Open Seldinger-guided femoral artery cannulation technique for thoracic aortic surgery. Ann Thorac Surg 2016; 101 (06) 2231-2235
  • 120 Fusco DS, Shaw RK, Tranquilli M, Kopf GS, Elefteriades JA. Femoral cannulation is safe for type A dissection repair. Ann Thorac Surg 2004; 78 (04) 1285-1289 , discussion 1285–1289
  • 121 Kouchoukos NT, Masetti P, Rokkas CK, Murphy SF, Blackstone EH. Safety and efficacy of hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg 2001; 72 (03) 699-707 , discussion 707–708
  • 122 Ayyash B, Tranquilli M, Elefteriades JA. Femoral artery cannulation for thoracic aortic surgery: safe under transesophageal echocardiographic control. J Thorac Cardiovasc Surg 2011; 142 (06) 1478-1481
  • 123 Sabik JF, Nemeh H, Lytle BW. , et al. Cannulation of the axillary artery with a side graft reduces morbidity. Ann Thorac Surg 2004; 77 (04) 1315-1320
  • 124 Strauch JT, Spielvogel D, Lauten A. , et al. Axillary artery cannulation: routine use in ascending aorta and aortic arch replacement. Ann Thorac Surg 2004; 78 (01) 103-108 , discussion 103–108
  • 125 Numata S, Ogino H, Sasaki H. , et al. Total arch replacement using antegrade selective cerebral perfusion with right axillary artery perfusion. Eur J Cardiothorac Surg 2003; 23 (05) 771-775 , discussion 775
  • 126 Svensson LG, Blackstone EH, Rajeswaran J. , et al. Does the arterial cannulation site for circulatory arrest influence stroke risk?. Ann Thorac Surg 2004; 78 (04) 1274-1284 , discussion 1274–1284
  • 127 Davis L. Cardiopulmonary Bypass: Principles and Practice. In: Gravlee GP, Davis RF, Utley JR. , eds. PA, USA: Lippincott Williams & Wilkins; 1993
  • 128 Stone JG, Young WL, Smith CR. , et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed?. Anesthesiology 1995; 82 (02) 344-351
  • 129 Murakami K, Kondo T, Yang G, Chen SF, Morita-Fujimura Y, Chan PH. Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis. Prog Neurobiol 1999; 57 (03) 289-299
  • 130 Koenig H, Goldstone AD, Lu CY. Blood brain barrier breakdown in brain edema following cold injury is mediated by microvascular polyamines. Biochem Biophys Res Commun 1983; 116 (03) 1039-1048
  • 131 Mezrow CK, Midulla PS, Sadeghi AM. , et al. Quantitative electroencephalography: a method to assess cerebral injury after hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1995; 109 (05) 925-934
  • 132 Keenan JE, Benrashid E, Kale E, Nicoara A, Husain AM, Hughes GC. Neurophysiological intraoperative monitoring during aortic arch surgery. Semin Cardiothorac Vasc Anesth 2016; 20 (04) 273-282
  • 133 Witoszka MM, Tamura H, Indeglia R, Hopkins RW, Simeone FA. Electroencephalographic changes and cerebral complications in open-heart surgery. J Thorac Cardiovasc Surg 1973; 66 (06) 855-864
  • 134 James ML, Andersen ND, Swaminathan M. , et al. Predictors of electrocerebral inactivity with deep hypothermia. J Thorac Cardiovasc Surg 2014; 147 (03) 1002-1007
  • 135 Stecker MM, Cheung AT, Pochettino A. , et al. Deep hypothermic circulatory arrest: II. Changes in electroencephalogram and evoked potentials during rewarming. Ann Thorac Surg 2001; 71 (01) 22-28
  • 136 Stecker MM. Neurophysiology of surgical procedures for repair of the aortic arch. J Clin Neurophysiol 2007; 24 (04) 310-315
  • 137 Guérit JM, Verhelst R, Rubay J. , et al. The use of somatosensory evoked potentials to determine the optimal degree of hypothermia during circulatory arrest. J Card Surg 1994; 9 (05) 596-603
  • 138 Ghariani S, Liard L, Spaey J. , et al. Retrospective study of somatosensory evoked potential monitoring in deep hypothermic circulatory arrest. Ann Thorac Surg 1999; 67 (06) 1915-1918 , discussion 1919–1921
  • 139 Karadeniz U, Erdemli O, Ozatik MA. , et al. Assessment of cerebral blood flow with transcranial Doppler in right brachial artery perfusion patients. Ann Thorac Surg 2005; 79 (01) 139-146 , discussion 146
  • 140 Apostolakis E, Akinosoglou K. The methodologies of hypothermic circulatory arrest and of antegrade and retrograde cerebral perfusion for aortic arch surgery. Ann Thorac Cardiovasc Surg 2008; 14 (03) 138-148
  • 141 Zheng F, Sheinberg R, Yee M-S, Ono M, Zheng Y, Hogue CW. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 2013; 116 (03) 663-676
  • 142 Hofer A, Haizinger B, Geiselseder G, Mair R, Rehak P, Gombotz H. Monitoring of selective antegrade cerebral perfusion using near infrared spectroscopy in neonatal aortic arch surgery. Eur J Anaesthesiol 2005; 22 (04) 293-298
  • 143 Murkin JM, Adams SJ, Novick RJ. , et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007; 104 (01) 51-58
  • 144 Orihashi K, Sueda T, Okada K, Imai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg 2004; 26 (05) 907-911
  • 145 Harrer M, Waldenberger FR, Weiss G. , et al. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur J Cardiothorac Surg 2010; 38 (05) 561-567
  • 146 Urbanski PP, Lenos A, Kolowca M. , et al. Near-infrared spectroscopy for neuromonitoring of unilateral cerebral perfusion. Eur J Cardiothorac Surg 2013; 43 (06) 1140-1144
  • 147 Yu Q, Sun L, Chang Q, Sun G, Liu J. Monitoring of antegrade selective cerebral perfusion for aortic arch surgery with transcranial Doppler ultrasonography and near-infrared spectroscopy. Chin Med J (Engl) 2001; 114 (03) 257-261
  • 148 Wang X, Ji B, Yang B. , et al. Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study. ASAIO J 2012; 58 (02) 122-126
  • 149 Cook DJ, Oliver Jr WC, Orszulak TA, Daly RC. A prospective, randomized comparison of cerebral venous oxygen saturation during normothermic and hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 1994; 107 (04) 1020-1028 , discussion 1028–1029
  • 150 Ikeda K, MacLeod DB, Grocott HP, Moretti EW, Ames W, Vacchiano C. The accuracy of a near-infrared spectroscopy cerebral oximetry device and its potential value for estimating jugular venous oxygen saturation. Anesth Analg 2014; 119 (06) 1381-1392
  • 151 Kiziltan HT, Baltali M, Bilen A. , et al. Comparison of alpha-stat and pH-stat cardiopulmonary bypass in relation to jugular venous oxygen saturation and cerebral glucose-oxygen utilization. Anesth Analg 2003; 96 (03) 644-650
  • 152 Murkin JM, Farrar JK, Tweed WA, McKenzie FN, Guiraudon G. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO2. Anesth Analg 1987; 66 (09) 825-832
  • 153 Stephan H, Weyland A, Kazmaier S, Henze T, Menck S, Sonntag H. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth 1992; 69 (01) 51-57
  • 154 Patel RL, Turtle MR, Chambers DJ, James DN, Newman S, Venn GE. Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 1996; 111 (06) 1267-1279
  • 155 Shimizu H, Matayoshi T, Morita M, Ueda T, Yozu R. Total arch replacement under flow monitoring during selective cerebral perfusion using a single pump. Ann Thorac Surg 2013; 95 (01) 29-34
  • 156 Minatoya K, Ogino H, Matsuda H. , et al. Evolving selective cerebral perfusion for aortic arch replacement: high flow rate with moderate hypothermic circulatory arrest. Ann Thorac Surg 2008; 86 (06) 1827-1831
  • 157 Piccioni MA, Leirner AA, Auler Jr JO. Comparison of pH-stat versus alpha-stat during hypothermic cardiopulmonary bypass in the prevention and control of acidosis in cardiac surgery. Artif Organs 2004; 28 (04) 347-352
  • 158 Halstead JC, Spielvogel D, Meier DM. , et al. Optimal pH strategy for selective cerebral perfusion. Eur J Cardiothorac Surg 2005; 28 (02) 266-273 , discussion 273
  • 159 Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes. J Thorac Cardiovasc Surg 1995; 110 (02) 349-362
  • 160 du Plessis AJ, Jonas RA, Wypij D. , et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 1997; 114 (06) 991-1000 , discussion 1000–1001
  • 161 Abdul Aziz KA, Meduoye A. Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest?. Interact Cardiovasc Thorac Surg 2010; 10 (02) 271-282
  • 162 Misfeld M, Leontyev S, Borger MA. , et al. What is the best strategy for brain protection in patients undergoing aortic arch surgery? A single center experience of 636 patients. Ann Thorac Surg 2012; 93 (05) 1502-1508
  • 163 Wiedemann D, Kocher A, Dorfmeister M. , et al. Effect of cerebral protection strategy on outcome of patients with Stanford type A aortic dissection. J Thorac Cardiovasc Surg 2013; 146 (03) 647-55.e1
  • 164 Halkos ME, Kerendi F, Myung R, Kilgo P, Puskas JD, Chen EP. Selective antegrade cerebral perfusion via right axillary artery cannulation reduces morbidity and mortality after proximal aortic surgery. J Thorac Cardiovasc Surg 2009; 138 (05) 1081-1089
  • 165 Harrington DK, Walker AS, Kaukuntla H. , et al. Selective antegrade cerebral perfusion attenuates brain metabolic deficit in aortic arch surgery: a prospective randomized trial. Circulation 2004; 110 (11) (Suppl. 01) II231-II236
  • 166 Svensson LG, Nadolny EM, Penney DL. , et al. Prospective randomized neurocognitive and S-100 study of hypothermic circulatory arrest, retrograde brain perfusion, and antegrade brain perfusion for aortic arch operations. Ann Thorac Surg 2001; 71 (06) 1905-1912
  • 167 Hu Z, Wang Z, Ren Z. , et al. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients. J Thorac Cardiovasc Surg 2014; 148 (02) 544-560
  • 168 Milewski RK, Pacini D, Moser GW. , et al. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times. Ann Thorac Surg 2010; 89 (05) 1448-1457
  • 169 Usui A, Yasuura K, Watanabe T, Maseki T. Comparative clinical study between retrograde cerebral perfusion and selective cerebral perfusion in surgery for acute type A aortic dissection. Eur J Cardiothorac Surg 1999; 15 (05) 571-578
  • 170 Williams ML, Ganzel BL, Slater AD. , et al. Antegrade versus retrograde cerebral protection in repair of acute ascending aortic dissection. Am Surg 2012; 78 (03) 349-351
  • 171 Ganapathi AM, Hanna JM, Schechter MA. , et al. Antegrade versus retrograde cerebral perfusion for hemiarch replacement with deep hypothermic circulatory arrest: does it matter? A propensity-matched analysis. J Thorac Cardiovasc Surg 2014; 148 (06) 2896-2902
  • 172 Muller D, Fieguth HG, Wimmer-Greinecker G, Wohleke T, Kleine P, Moritz A. Neurologic outcome after surgery of the aortic arch: Comparison of deep hypothermic arrest, antegrade and retrograde cerebral perfusion. Indian J Thorac Cardiovasc Surg 2004; 20 (02) 72-76
  • 173 Svensson LG, Blackstone EH, Apperson-Hansen C. , et al. Implications from neurologic assessment of brain protection for total arch replacement from a randomized trial. J Thorac Cardiovasc Surg 2015; 150 (05) 1140-7.e11
  • 174 Garg V, Tsirigotis DN, Dickson J. , et al. Direct innominate artery cannulation for selective antegrade cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery. J Thorac Cardiovasc Surg 2014; 148 (06) 2920-2924
  • 175 Garg V, Peterson MD, Chu MW. , et al. Axillary versus innominate artery cannulation for antegrade cerebral perfusion in aortic surgery: design of the Aortic Surgery Cerebral Protection Evaluation (ACE) CardioLink-3 randomised trial. BMJ Open 2017; 7 (06) e014491
  • 176 Halstead JC, Meier M, Wurm M. , et al. Optimizing selective cerebral perfusion: deleterious effects of high perfusion pressures. J Thorac Cardiovasc Surg 2008; 135 (04) 784-791
  • 177 Jonsson O, Morell A, Zemgulis V. , et al. Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20° centigrade. Ann Thorac Surg 2011; 91 (04) 1198-1205
  • 178 Strauch JT, Spielvogel D, Lauten A. , et al. Technical advances in total aortic arch replacement. Ann Thorac Surg 2004; 77 (02) 581-589 , discussion 589–590
  • 179 Di Bartolomeo R, Pacini D, Di Eusanio M, Pierangeli A. Antegrade selective cerebral perfusion during operations on the thoracic aorta: our experience. Ann Thorac Surg 2000; 70 (01) 10-15 , discussion 15–16
  • 180 Ueda T, Shimizu H, Ito T. , et al. Cerebral complications associated with selective perfusion of the arch vessels. Ann Thorac Surg 2000; 70 (05) 1472-1477
  • 181 Di Eusanio M, Schepens MA, Morshuis WJ. , et al. Brain protection using antegrade selective cerebral perfusion: a multicenter study. Ann Thorac Surg 2003; 76 (04) 1181-1188 , discussion 1188–1189
  • 182 Dossche KM, Schepens MA, Morshuis WJ, Muysoms FE, Langemeijer JJ, Vermeulen FE. Antegrade selective cerebral perfusion in operations on the proximal thoracic aorta. Ann Thorac Surg 1999; 67 (06) 1904-1910 , discussion 1919–1921
  • 183 Bachet J, Guilmet D, Goudot B. , et al. Antegrade cerebral perfusion with cold blood: a 13-year experience. Ann Thorac Surg 1999; 67 (06) 1874-1878 , discussion 1891–1894
  • 184 Bavaria JE, Pochettino A, Brinster DR. , et al. New paradigms and improved results for the surgical treatment of acute type A dissection. Ann Surg 2001; 234 (03) 336-342 , discussion 342–343
  • 185 Duebener LF, Hagino I, Sakamoto T. , et al. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Circulation 2002; 106 (12) (Suppl. 01) I103-I108
  • 186 Englum BR, Andersen ND, Husain AM, Mathew JP, Hughes GC. Degree of hypothermia in aortic arch surgery - optimal temperature for cerebral and spinal protection: deep hypothermia remains the gold standard in the absence of randomized data. Ann Cardiothorac Surg 2013; 2 (02) 184-193