Nuklearmedizin 1990; 29(04): 170-176
DOI: 10.1055/s-0038-1629527
Originaler Artikel
Schattauer GmbH

Measurement of Renal Parenchymal Transit Time of 99mTc-MAG3 Using Factor Analysis

Messung der renalen parenchymalen Durchgangszeit von 99mTc-MAG 3 unter Verwendung der Faktoranalyse
C. D. Russell
1   From the Division of Nuclear Medicine, University of Alabama Hospital, and the Nuclear Medicine Service, Veterans Administration Medical Center, Birmingham, Alabama, USA
,
M. V. Yester
1   From the Division of Nuclear Medicine, University of Alabama Hospital, and the Nuclear Medicine Service, Veterans Administration Medical Center, Birmingham, Alabama, USA
,
Eva V. Dubovsky
1   From the Division of Nuclear Medicine, University of Alabama Hospital, and the Nuclear Medicine Service, Veterans Administration Medical Center, Birmingham, Alabama, USA
› Author Affiliations
Further Information

Publication History

Received: 29 January 1990

Publication Date:
04 February 2018 (online)

Renal parenchymal transit time of the recently introduced radiopharmaceutical 99mTc-MAG3 (mercaptoacetylglycylglylcylglycinel) was measured in 37 kidneys, using factor analysis to separate parenchymal activity from that in the collecting system. A new factor algorithm was employed, based on prior interpolative background subtraction and use of the fact that the initial slope of the collecting system factor time-activity curve must be zero. The only operator intervention required was selection of a rectangular region enclosing the kidney (by identifying two points at opposite corners). Transit time was calculated from the factor time-activity curves both by deconvolution of the parenchymal factor curve and also by measuring the appearance time for collecting system activity from the collecting system factor curve. There was substantial agreement between the two methods. Factor analysis led to a narrower range of normal values than a conventional cortical region-of-interest method, presumably by decreasing crosstalk from the collecting system. In preliminary trials, the parenchymal transit time did not well separate four obstructed from seventeen unobstructed kidneys, but it successfully (p <0.05) separated six transplanted kidneys with acute rejection or acute tubular necrosis from 10 normal transplants.

Zusammenfassung

Bei 37 Nieren wurde die renale Durchflußzeit des neuen Radiopharmazeutikums 99mTc-MAG3 unter Benutzung der Faktorenanalyse gemessen. Der Algorithmus erlaubt getrennte Messung von Parenchymaktivität und Aktivität im Sammelrohrsystem. Er basiert auf interpolativer Hintergrundsubtraktion und der Tatsache, daß die Initialsteigung der Zeitaktivitätskurve des Sammelrohrfaktors Null sein muß. Der einzige nicht computergesteuerte Eingriff bestand in der Auswahl eines die Niere umgebenden Rechtecks (definiert durch zwei ge genüberliegende Eckpunkte). Die Durchflußzeit wurde von den Faktorenkurven sowohl durch Dekonvolution des Parenchymfaktors als auch durch die Messung der Erscheinungszeit im Sammelrohrsystem berechnet. Beide Methoden ergaben ähnliche Resultate. Die Faktorenanalyse ergab einen kleineren Normwertbereich als die konventionelle Definition einer Region über der Nierenrinde, wahrscheinlich aufgrund geringeren “crosstalks” vom Sammelrohrsystem. In vorläufigen Versuchen waren Nierenobstruktion (n = 4) und Nichtobstruktion (n = 17) nicht klar unterscheidbar, während akute Tubulusnekrose oder akute Abstoßung transplantierter Nieren (n = 6) von erfolgreich transplantierten Nieren (n = 10) klar unterschieden werden konnten (p <0,05).

 
  • REFERENCES

  • 1 Barber D C. The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys Med Biol 1980; 25: 283-92.
  • 2 Britton K E, Nimmon C C, Whitfield H N. et al. The evaluation of obstructive nephropathy by means of parenchymal retention functions. In: Hollenberg N K, Lange S. eds. Radionuclides in nephrology. Stuttgart: Georg Thieme; 1980: 164.
  • 3 Britton K E, Nimmon C C, Whitfield H N, Hendry W F, Wickham J E A. Obstructive nephropathy: successful evaluation with radionuclides. Lancet 1979; i: 905-7.
  • 4 Bubeek B, Brandau W, Steinbaecher M. et al. 99mTechnetium labeled renal function and imaging agents: II. Clinical evaluation of 99mTc-MAG3 (99mTc mercaptoacetylglycylglycylglycine). Nucl Med 1988; 15: 109-18.
  • 5 Cavailloles F, Bazin J-P, Di Paola R. Factor analysis in gated cardiac studies. J Nucl Med 1984; 25: 1067-79.
  • 6 Di Paola R, Banin J P, Aubry F. et al. Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sei 1982; NS-29: 1310-21.
  • 7 Fritzberg A R, Kasina S, Eshima D, Johnson D L. Synthesis and biological evaluation of 99mTechnetium-MAG3 as a hippuran replacement. J Nucl Med 1986; 27: 111-6.
  • 8 Gruenewald S M, Collins L T. Renovascular hypertension: quantitative renography as a screening test. Radiology 1983; 149: 287-91.
  • 9 Houston A S. The effect of apex-finding errors on factor images obtained from factor analysis and oblique transformation. Phys Med Biol 1984; 29: 1109-16.
  • 10 Houston A S, Elliott A T, Stone D L. Factorial phase imaging: a new concept in the analysis of first-pass cardiac studies. Phys Med Biol 1982; 27: 1269-77.
  • 11 Jafri A R, Britton K E, Nimmon C E. et al. 99mTechnetiurn-MAG3 a comparison with 123Iodine and 131Iodine-orthoiodohippurate in patients with renal disorders. J Nucl Med 1988; 29: 147-58.
  • 12 Kalika V, Bard R H, lloreta A. et al. Prediction of renal functional recovery after relief of upper urinary tract obstruction. J Urol 1981; 124: 301-5.
  • 13 Kuruc A, Caldicott W J H, Treves S. An improved deconvolution technique for the calculation of renal retention functions. Comput Biomed Res 1982; 15: 46-56.
  • 14 Lawson C L, Hanson R J. Solving least squares problems. Englewood Cliffs, NJ: Prentice-Hall; 1974: 288-9.
  • 15 MacLeod MA, Houston A S. Factor analysis of dynamic structures (FADS) in the diagnosis of renal disease. Eur J Nucl Med 1989; 15: 601-4.
  • 16 Nijran K S, Barber D C. Towards automatic analysis of dynamic radionuclide studies using principal-components factor analysis. Phys Med Biol 1985; 30: 1315-25.
  • 17 Nijran K S, Barber D C. A completely automatic method of processng 131I-labelled rose bengal dynamic liver studies. Phys Med Biol 1986; 01: 563-70.
  • 18 Nijran K S, Barber D C. Factor analysis of dynamic function studies using a priori physiological information. Phys Med Biol 1986; 31: 1107-17.
  • 19 Oppenheim B E, Applcdorn C R. Functional renal imaging through factor analysis. J Nucl Med 1981; 22: 417-23.
  • 20 Pavel D G, Olea E, Bello A. et al. Factor analysis of dynamic renal studies in urology. J Nucl Med 1988; 29: 816.
  • 21 Russell C D. Estimation of glomerular filtration rate using 99mTc-DTPA and the gamma camera. Eur J Nucl Med 1988; 12: 547-52.
  • 22 Russell C D, Thorstad B L, Stutzman K. et al. Kidney imaging with 99mTc-MAG3, a technetium labelled analog of hippuran. Radiology 1989; 172: 427-30.
  • 23 Russell C D, Thorstad B, Yester M V. et al. Comparison of 99mTc-MAG3 with 131I Hippuran by a simultaneous dual channel technique. J Nucl Med 1988; 29: 1189-93.
  • 24 Russell C D, Thorstad B, Yester M V, Stutzman M, Dubovsky E V. Quantitation of renal function with 99mTc-MAG3 . J Nucl Med 1988; 29: 1931-3.
  • 25 Rutland M D. A comprehensive analysis of renal DTPA studies. I. Theory and normal values. Nucl Med Comm 1985; 06: 11-20.
  • 26 Samal M, Karny M, Surova H, Marikova E, Dienstbier Z. Rotation to simple structure in factor analysis of dynamic radionuclide studies. Phys Med Biol 1987; 32: 371-82.
  • 27 Samal M, Karny M, Surova H. et al. On the existence of an unambiguous solution in factor analysis of dynamic studies. Phys Med Biol 1989; 34: 223-8.
  • 28 Samal M, Surova H, Karny M. et al. Enhancement of physiological factors in factor analysis of dynamic studies. Eur J Nucl Med 1986; 12: 280-3.
  • 29 Schmidlin P. Quantitative evaluation and imaging of functions using pattern recognition methods. Phys Med Biol 1979; 24: 385-95.
  • 30 Szabo Z, Kutkuhn B, Gcorgcscu G. et al. Parametrische Darstellung der Nicrenfunktion mit 99mTc-Merkaptoazetyltriglyzin (MAG3). Nucl-Med 1989; 28: 73-83.
  • 31 Taylor A, Eshima D, Fritzberg A R, Christian P E, Kasina S. Comparison of 131I-OIH and 99mtcchnetium-MAG3 renal imaging in volunteers. J Nucl Med 1986; 27: 795-803.
  • 32 Verbozen M, Achten R, Kcuppens F, Jonckheer M, Piepsz A. Radioisotopic transit parameters in obstruction of pelviureteral junction. Urology 1988; 32: 371-4.
  • 33 Vivian G C, Barratt T M, Todd-Pokropek A, Gordon I. Renal parenchymal determination and analysis during dynamic 99mTcDTPA scans in children. Nucl Med Comm 1984; 05: 35-40.
  • 34 Vivian G, Barratt T M, Todd-Pokropek A, Gordon I. Physiologic variations of normal transit time in children. Eur J Nucl Med 1985; 11: 179-81.
  • 35 Whitfield H N, Britton K E, Kelsy-Fry W F. et al. The obstructed kidney: correlation between renal function and urodynamic assessment. Brit J Urol 1977; 49: 615-9.