Nervenheilkunde 2012; 31(03): 115-122
DOI: 10.1055/s-0038-1628269
Schmerz
Schattauer GmbH

Definition und Pathophysiologie neuropathischer Schmerzen

Definition and pathophysiology of neuropathic pain
S. Schuh-Hofer
1   Lehrstuhl für Neurophysiologie, Zentrum für Biomedizin und Medizintechnik, Medizinische Fakultät Mannheim der Universität Heidelberg
2   Zentrum für Neurologie, Abteilung Epileptologie, Universitätsklinikum Tübingen
,
R.-D. Treede
2   Zentrum für Neurologie, Abteilung Epileptologie, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

Eingegangen am: 14 April 2011

angenommen am: 27 April 2011

Publication Date:
23 January 2018 (online)

Zusammenfassung

Unser wissenschaftliches Verständnis von der Pathophysiologie neuropathischer Schmerzen hat sich in den letzten zwei Dekaden elementar erweitert. Hieraus ergab sich nicht zuletzt die Notwendigkeit, die 1994 formulierte Begriffsdefinition vom „Neuropathischen Schmerz“ weiter zu präzisieren und besser von Schmerzsyndromen anderweitigen pathophysiologischen Ursprungs abzugrenzen. Die von der NeuPSIG (Special Interest Group on Neuropathic Pain) erarbeitete, revidierte Definition vom neuropathischen Schmerz hat Eingang in die IASP-Taxonomie (International Association for the Study of Pain) gefunden, die in jeweils aktuellster Fassung über die Internetseite zugänglich ist (www.iasppain.org). Zudem wurde von der NeuPSIG ein diagnostisches Stufenschema entwickelt, an-hand dessen neuropathische Schmerzsyndrome nach ihrer diagnostischen Wahrscheinlichkeit klassifiziert werden können. In dem vorliegenden Artikel soll die gültige Definition vom neuropathischen Schmerz diskutiert und der neu entwickelte diagnostische Algorithmus zur Einordnung neuropathischer Schmerzsyndrome – auf der Grundlage der aktuellen Schmerzterminologie – vorgestellt werden. Darüber hinaus wird ein Überblick über die pathophysiologischen Grundlagen gegeben.

Summary

Over the past two decades, our knowledge regarding the pathophysiology of neuropathic pain has substantially changed. In light of growing insights into the complex patho-physiological mechanisms, the Special Interest Group on Neuropathic Pain (NeuPSIG) proposed a redefinition of the term “neuropathic pain” in order to distinguish it more precisely from nociceptive pain or other pain syndromes. This redefined term was finally integrated in the IASP Taxonomy, of which the respective up to date version is published in the Internet (www.iasp-pain.org). Moreover, the NeuPSIG proposed a grading scheme which enables the clinician to classify neuropathic pain syndromes according to certainty of the diagnosis. Based on the current IASP Basic Pain Terminology, this article will present the definition and classification of neuropathic pain syndromes and will give an overview on current concepts regarding the underlying pathophysiology.

 
  • Literatur

  • 1 Apkarian AV. et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005; 9: 463-84.
  • 2 Baumgärtner U. et al. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 2010; 104: 2863-72.
  • 3 Becerra L. et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006; 26: 10646-57.
  • 4 Bee LA, Dickenson AH. Descending facilitation from the brainstem determines behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain 2008; 140: 209-23.
  • 5 Bester H, Beggs S, Woolf CJ. Changes in tactile stimuli-induced behavior and c-Fos expression in the superficial dorsal horn and in parabrachial nuclei after sciatic nerve crush. J Comp Neurol 2000; 428: 45-61.
  • 6 Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006; 52: 77-92.
  • 7 Caspani O. et al. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 2009; 4: e7383.
  • 8 Caterina MJ. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-24.
  • 9 Chen J, Sandkühler J. Induction of homosynaptic long-term depression at spinal synapses of sensory Ad-fibres requires activation of metabotropic glutamate receptors. Neuroscience 2000; 98: 141-9.
  • 10 Cheng JK, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 2008; 33: 1970-8.
  • 11 Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 2007; 131: 243-57.
  • 12 Davis JB. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000; 405: 183-7.
  • 13 Di Piero V. et al. Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 1991; 46: 9-12.
  • 14 Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 2007; 117: 3603-9.
  • 15 Ducreux D. et al. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 2006; 129: 963-76.
  • 16 Elbert T. et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 1994; 5: 2593-7.
  • 17 Flor H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482-4.
  • 18 Geber C. et al. Revised Definition of Neuropathic Pain and Its Grading System: An Open Case Series Illustrating Its Use in Clinical Practice. Am J Med 2009; 122 (Suppl. 01) S3-S12.
  • 19 Greffrath W. The capsaicin receptor. „TRPing“ transduction for painful stimuli. Schmerz 2006; 20: 219-25.
  • 20 Hains BC. et al. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003; 23: 8881-92.
  • 21 Haanpä M. et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011; 152: 14-27.
  • 22 Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull 1998; 45: 1-8.
  • 23 Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain 1911; 34: 102-254.
  • 24 Headache Classification Committee of the International Headache Society.. Classification and diagnostic criteria for headache disorders, cranial neuralgia and facial pain. Second Edition. Cephalalgia 2004; (Suppl 1): 1-160.
  • 25 Hsieh JC. et al. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 1995; 63: 225-36.
  • 26 Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 2007; 55: 365-76.
  • 27 Hudson LJ. et al. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neuroci 2001; 13: 2105-14.
  • 28 Hughes DI. et al. Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J Neurosci 2003; 23: 9491-9.
  • 29 Hou M. et al. Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 2002; 330: 223-6.
  • 30 Iadarola MJ. et al. Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 1995; 63: 55-64.
  • 31 Ikeda H. et al. Synpatic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003; 299: 1237-40.
  • 32 Jeanmonod D, Magnin M, Morel A. Thalamus and neurogenic pain: physiological, anatomical and clinical data. NeuroReport 1993; 4: 475-8.
  • 33 Ji RR. et al. MAP kinase and pain. Brain Res Rev 2009; 60: 135-48.
  • 34 Jones AK. et al. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 2004; 8: 479-85.
  • 35 Klein T. et al. Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 2004; 24: 964-71.
  • 36 Kohno T. et al. Peripheral axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal cord. Pain 2005; 117: 77-87.
  • 37 Koltzenburg M, Lundberg LE, Torebjork HE. Dynamic and static components of mechanical hyper-algesia in human hairy skin. Pain 1992; 51: 207-19.
  • 38 Lenz FA. et al. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 1989; 496: 357-60.
  • 39 Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochem Biophys Acta 2007; 1772: 989-1003.
  • 40 Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain 2008; 137: 473-7.
  • 41 Ma KT. et al. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion. Brain Res 2006; 66-75.
  • 42 Maarrawi J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007; 127: 183-94.
  • 43 Maihöfner C, Nickel FT, Seifert F. Neuropathische Schmerzsyndrome und Neuroplastizität in der funktionellen Bildgebung. Schmerz 2010; 24: 137-145.
  • 44 McKemy DD. et al. Identification of a cold receptor reveals a general role for TRP channels in thermo-sensation. Nature 2002; 416: 52-8.
  • 45 Merskey H, Bogduk N. Classification of chronic pain. In: Merskey H, Bogduk N. (eds). Part III: Pain terms, a current list with definitions and notes on usage. IASP task force on taxonomy. Seattle: IASP Press; 1994: 209-14.
  • 46 Mezey E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immuno-reactivity, in the central nervous system of the rat and human. PNAS 2000; 28: 3655-60.
  • 47 Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage 2007; 37 (Suppl. 01) S80-8.
  • 48 Moore KA. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002; 22: 6724-31.
  • 49 Napadow V. et al. Somatosensory cortical plasticity in carpal tunnel syndrome – a cross-sectional fMRI evaluation. Neuroimage 2006; 31: 520-30.
  • 50 Napadow V. et al. Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture. Hum Brain Mapp 2007; 28: 159-71.
  • 51 Peier AM. et al. A TRP channel that senses cold stimuli and menthol. Cell 2002; 108: 705-15.
  • 52 Petrovic P. et al. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 1999; 83: 459-70.
  • 53 Peyron R. et al. Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 1998; 121: 345-56.
  • 54 Peyron R. et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 2004; 63: 1838-1846.
  • 55 Sandkühler J. Understanding LTP in pain pathways. Mol Pain 2007; 3: 9.
  • 56 Scholz J. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005; 25: 7317-23.
  • 57 Siqueira S. et al. Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia. Neuroscience 2009; 573-7.
  • 58 Somborski K, Bingel U. Funktionelle Bildgebung in der Schmerzforschung. Schmerz 2010; 24: 385-400.
  • 59 Sprenger T. et al. Positronenemissionstomograhpie (PET) in der Schmerzforschung. Von der Struktur zur Aktivität des Opiatrezeptorsystems. Schmerz 2007; 21: 503-13.
  • 60 Tecchio F. et al. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp 2002; 17: 28-36.
  • 61 Treede RD. Spinothalamic and Thalamocortical Nociceptive Pathways. The Journal of Pain 2002; 3: 109-112.
  • 62 Treede RD. et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008; 70: 1630-5.
  • 63 Tsuzuki K. et al. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci 2004; 24: 762-71.
  • 64 Valet M, Sprenger T, Tölle TR. Studies on cerebral processing of pain using functional imaging: Somatosensory, emotional, cognitive, autonomic and motor aspects]. Schmerz 2010; 24: 114-21.
  • 65 Valtschanoff JG. et al. Vanilloid receptor VR1 is both presynaptic and postsynaptic in the superficial laminae of the rat dorsal horn. J Comp Neurol 2001; 436: 225-35.
  • 66 Vera-Portocarrero LP. et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience 2006; 40: 1311-20.
  • 67 Wang H. et al. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 2002; 529-46.
  • 68 Wang XL. et al. Downregulation of GABA(B) receptors in the spinal cord dorsal horn in diabetic neuropathy. Neuroscience Letters 2011; 112-5.
  • 69 Whiteside GT, Munglani R. Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 2001; 64: 168-73.
  • 70 Wiesenfeld-Hallin Z. et al. Central inhibitory dys-functions: mechanisms and clinical implications. Behav Brain Sci 1997; 20: 420-5.
  • 71 Willoch F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004; 108: 213-20.
  • 72 Woodbury CJ. et al. Identity of myelinated cutaneous sensory neurons projecting to nocireceptive laminae following nerve injury of adult mice. J Comp Neurol 2008; 508: 500-9.
  • 73 Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992; 355: 75-8.
  • 74 Woolf CJ, Costigan M. Transcriptional and post-translational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA 1999; 96: 7723-30.
  • 75 Wu G. et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 2002; 22: 7746-53.
  • 76 Yang TT. et al. Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport 1994; 5: 701-4.
  • 77 Yang L. et al. Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur J Neurosci 2004; 19: 871-83.
  • 78 Zhang X. et al. Marked increase in cholecystokinin B receptor messenger RNA levels in rat dorsal root ganglia after peripheral axotomy. Neuroscience 1993; 57: 227-33.
  • 79 Binder A, Stengel M, Klebe O, Wasner G, Baron R. Topical high-concentration (40%) menthol-somatosensory profile of a human surrogate pain model. J Pain 2011; 12: 764-73.