Nervenheilkunde 2006; 25(03): 117-122
DOI: 10.1055/s-0038-1626451
Arbeiten zum Schwerpunkt - Theme Articles
Schattauer GmbH

Pathophysiologie der Restitution zentralmotorischer Störungen

Pathophysiology of motor restitution
R. Wenzelburger
1   Klinik für Neurologie, Neurozentrum, Campus Kiel, Universitätsklinikum Schleswig-Holstein
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

Die meisten Bewegungen werden durch motorische kortikale Areale gesteuert, die partielle Redundanz aufweisen und über mehrere Gefäßterritorien verteilt sind. Bei Läsion der dominierenden kortikospinalen Projektion vom primär motorischen Kortex (M1) können die noch intakten motorischen Repräsentationen ihre Rolle ändern, sofern der Patient eine Strategie findet, sie zu aktivieren. Somit hängt die Prognose der motorischen Restitution ab von Lokalisation und Ausdehnung einer zentralen Läsion sowie von der Intensität und Repetition des Trainings.

Neben den Neuronen des Kortikospinaltrakts tragen auch kortikostriale Projektionen zur Restitution bei. Cues wie sensorisches Feedback, propriozeptive, verbale und visuelle Reize oder bereits die Vorstellung einer Bewegung können über dieses System die Aktivität der Motoneurone steigern sowie den Abruf erlernter Bewegungsmuster erleichtern.

Bei Läsion des Kortikospinaltrakts werden motorische Systeme des Mittelhirns aktiviert, beispielsweise der an der Steuerung der Lokomotion beteiligte pedunculopontine Nucleus. Dieser projiziert auch zu den Retikulo-und Rubrospinaltrakten, die eine qualitativ eingeschränkte motorische Erholung ermöglichen. Die Systeme des Mittelhirns sind auch mit central pattern generators des Rückenmarks verbunden, die neben ihrer Rolle für das Gehen auch an synergistischen Bewegungen der oberen Extremität beteiligt sein könnten. Spastische Syndrome treten vorwiegend nach nahezu kompletter zentraler Deefferenzierung mit Plegien auf. Durch ein intensives Training werden sie nicht wesentlich verstärkt, sofern eine inkomplette Parese mit verbleibender motorischer Funktion vorliegt.

Summary

Most types of movements are controlled by multiple motor cortical areas that are distributed amongst several vascular territories and provide partial redundancies of functions. The function of surviving motor circuits can undergo changes after a lesion of the dominant corticospinal projection from the primary motor cortex (M1) if the patients find a strategy to activate them. Intensity of training and location or extent of the lesions are crucial factors of motor outcome.

Corticostriatale neurons add to the role of the corticospinal tract for restitution. The activity of motor neurons can be enhanced via corticostriatale circuits by sensory feedback, proprioceptive, verbal or visual cues, or even by pure imagination of the movement. Such cues may also facilitate the recall of pre-learned movement patterns.

In case of lesions to the corticospinal tract independent motor systems of the mesencephalon might be activated, e.g. the pedunculopontine nucleus which is involved in the control of locomotion. Their projections via the reticulospinal and rubrospinal tracts allow for partial recovery although the quality of movements remains limited. The mesencephalic motor system also projects to central pattern generators of the spinal cord which are known for their function in locomotion. However, the spinal pattern generators may also have a role for synergistic movements of the upper extremity. Spasticity is mostly evoked only by virtually complete central de-efferentation with plegia. Even intense exercise in partial paresis with remaining motor function does not lead to worsened spasticity in the majority of cases.

 
  • Literatur

  • 1 Belhaj-Saif A, Cheney PD. Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J Neurophysiol 2000; 83: 3147-53.
  • 2 Bizzi E, Tresch MC, Saltiel P, d’Avella A. New perspectives on spinal motor systems. Nat Rev Neurosci 2000; 01: 101-8.
  • 3 Cheney P, Hill-Karrer J, Belhaj-Saif A. editors. Cortical motor areas and their properties: implications for neuroprosthetics. Amsterdam: Elsevier; 2000
  • 4 Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 2002; 51: 122-5.
  • 5 Dick JP, Benecke R, Rothwell JC, Day BL, Marsden CD. Simple and complex movements ina patient with infarction of the right supplementary motor area. Mov Disord 1986; 01: 255-66.
  • 6 Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003; 114: 1379-89.
  • 7 Dobkin BH. Neurobiology of rehabilitation. Ann NY Acad Sci 2004; 1038: 148-70.
  • 8 Dobkin BH, Harkema S, Requejo P, Edgerton VR. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil 1995; 09: 183-90.
  • 9 Edgerton VR, Roy RR. Paralysis recovery in humans and model systems. Curr Opin Neurobiol 2002; 12: 658-67.
  • 10 Feydy A, Carlier R, Roby-Brami A. et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002; 33: 1610-7.
  • 11 Graziano MS, Taylor CS, Moore T. Complex movements evoked by microstimulation of precentral cortex. Neuron 2002; 34: 841-51.
  • 12 Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997; 77: 797-811.
  • 13 Jankowska E, Cabaj A, Pettersson LG. How to enhance ipsilateral actions of pyramidal tract neurons. J Neurosci 2005; 25: 7401-5.
  • 14 Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol 2002; 540: 623-33.
  • 15 Lee L, Siebner HR, Rowe JB. et al. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 2003; 23: 5308-18.
  • 16 Lee MS, Rinne JO, Marsden CD. The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 2000; 41: 167-84.
  • 17 Mansur CG, Fregni F, Boggio PS. et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 2005; 64: 1802-4.
  • 18 Matsumura M, Nambu A. et al. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 2000; 98: 97-110.
  • 19 Morecraft RJ, Herrick JL, Stilwell-Morecraft K. et al. Localization of arm representation in the corona radiata and internal capsule in the non-human primate. Brain 2002; 125: 176-98.
  • 20 Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791-4.
  • 21 Poppele R, Bosco G. Sophisticated spinal contributions to motor control. Trends Neurosci 2003; 26: 269-76.
  • 22 Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL. et al. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS Investigators. Stroke 1999; 30: 293-8.
  • 23 Smith GV, Silver KH, Goldberg AP, Macko RF. „Task-oriented” exercise improves hamstring strength and spastic reflexes in chronic stroke patients. Stroke 1999; 30: 2112-8.
  • 24 Sterr A, Freivogel S. Intensive training in chronic upper limb hemiparesis does not increase spasticity or synergies. Neurology 2004; 63: 2176-7.
  • 25 Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 1998; 119: 493-503.
  • 26 Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-96.
  • 27 Wenzelburger R, Kopper F, Frenzel A. et al. Hand coordination following capsular stroke. Brain 2005; 128: 64-74.