Tierarztl Prax Ausg G Grosstiere Nutztiere 2007; 35(04): 299-303
DOI: 10.1055/s-0037-1621440
Pferd
Schattauer GmbH

Verbessert Höhentraining den antioxidativen Status und die physische Leistungsfähigkeit von Pferden?[*]

Does altitude training improve antioxidant protection and physical performance of horses?
M. Stohrer
1   Aus dem Institut für Physiologie, Physiologische Chemie und Tierernährung (Vorstand: Prof. Dr. M. Stangassinger) der Ludwig-Maximilians-Universität München
,
M. Menn
1   Aus dem Institut für Physiologie, Physiologische Chemie und Tierernährung (Vorstand: Prof. Dr. M. Stangassinger) der Ludwig-Maximilians-Universität München
,
M. Stangassinger
1   Aus dem Institut für Physiologie, Physiologische Chemie und Tierernährung (Vorstand: Prof. Dr. M. Stangassinger) der Ludwig-Maximilians-Universität München
› Author Affiliations
Further Information

Publication History

Eingegangen: 05 April 2007

akzeptiert: 06 July 2007

Publication Date:
06 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: In einer experimentellen Studie sollte die Hypothese geprüft werden, dass das Höhentraining der Bundeswehr die physische Leistungsfähigkeit der Tragtiere verbessert und den körpereigenen Schutz gegen Sauerstoffradikale verstärkt. Material und Methoden: Von fünf Haflingern wurden venöse Blutproben vier Tage vor einem Höhentraining (sieben Tage, 1700–2400 m) sowie vier Tage und 60 Tage danach entnommen und Parameter zur Beurteilung der Sauerstofftransportkapazität, des oxidativen Stresses und des antioxidativen Status bestimmt. Zur Beurteilung der Leistungsfähigkeit wurde während eines Belastungstests der Anstieg der Laktatkonzentration im Blut gemessen. Ergebnisse: Das Höhentraining der Pferde steigerte die Sauerstofftransportkapazität im Blut. Dies bewies der hochsignifikante Hämatokritanstieg von 0,30 (± 0,02) auf 0,36 (± 0,02) l/l. Gleichzeitig verursachte der Höhenaufenthalt oxidativen Stress. Die Konzentration der Radikalmarker HNE-modifizierte Proteine und Malondialdehyd (MDA) war im Blutplasma signifikant erhöht (MDA: von 1,33 [± 0,38] auf 1,93 [± 0,26] μmol/mmol Hb). In der Folge verbesserte sich der antioxidative Status signifikant (Trolox Equivalent Antioxidative Capacity, TEAC: von 0,64 ± 0,06 auf 0,79 ± 0,05 mmol/l) und wahrscheinlich auch die physische Leistungsfähigkeit. Hinweise auf eine Schädigung von Organen traten dabei nicht auf. Schlussfolgerung und klinische Relevanz: Das Höhentraining der Tragtiere, wie es bei der Bundeswehr derzeit durchgeführt wird, ist für die Gesundheit und Leistungsfähigkeit der Pferde vorbehaltlos empfehlenswert.

Summary

Objective: An experimental study was performed in order to prove the hypothesis, that the altitude training of the German army can improve physical performance and antioxidant protection of the pack-animals. Material and methods: Venous blood samples of five Haflingers were drawn four days before an altitude training (seven days, 1700–2400 m) as well as four days and 60 days afterwards for assessment of oxygen transport capacity, oxidative stress and antioxidative status. In order to evaluate physical performance blood lactate concentration was measured during a defined endurance test. Results: The altitude training of horses enhanced the oxygen transport capacity of their blood. This was proved by a highly significant hematocrit rise from 0.30 (± 0.02) to 0.36 (± 0.02) l/l. At the same time this altitude training caused oxidative stress. The two oxygen radical markers HNE-modified proteins and malondialdehyde (MDA) were significantly increased in blood plasma (MDA: from 1.33 (± 0.38) to 1.93 (± 0.26) μmol/mmol Hb). As a consequence, the antioxidative status significantly improved (Trolox Equivalent Antioxidative Capacity, TEAC: from 0.64 ± 0.06 to 0.79 ± 0.05 mmol/l) and probably also the physical performance of the horses. Indications of impairment of organs could not be found. Conclusion and clinical relevance: The altitude training of the packanimals, such as actually practised by the German army, can be recommended without reservation to improve health and physical performance of the horses.

* Herrn Prof. Dr. Dr. h. c. mult. H.-G. Liebich zum 65. Geburtstag gewidmet.


 
  • Literatur

  • 1 Boveris A, Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 1975; 54 (Suppl. 03) 311-314.
  • 2 Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156-170.
  • 3 Halliwell B, Gutteridge JMC. eds. Free Radicals in Biology and Medicine, 2nd ed. Oxford: Clarendon; 1989
  • 4 De Marees H. Sportphysiologie. In: Medizin von Heute. Köln: Troponwerke; 1981
  • 5 Schmidt W. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity. HighAlt Med Biol Summer 2002; 3 (Suppl. 02) 167-176.
  • 6 Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88: 1474-1480.
  • 7 De Paoli Vitali E, Guglielmini C, Casoni I, Vedovato M, Gilli P, Farinelli A. Serum erythropoietin in cross-country skiers. Int J Sports Med 1988; 9: 99-101.
  • 8 Schwandt HJ, Heyduck B, Gunga HC, Rocker L. Influence of prolonged physical exercise on erythropoietin concentration in blood. Eur J Appl Physiol 1991; 63: 463-466.
  • 9 Banchero N. Capillary density of skeletal muscle in dogs exposed to simulated altitude. Proc Soc Exp Biol Med 1975; 148: 435-439.
  • 10 Greene H, Sutton J, Wolfel E. Altitude acclimatization and energy metabolism adaptations in skeletal muscle during exercise. J Appl Physiol 1992; 73: 2701-2708.
  • 11 Bigard A, Brunet A, Guezennec C. Skeletal muscle changes after endurance training at high altitude. J Appl Physiol 1991; 71: 2114-2121.
  • 12 Jefferson JA, Simoni J, Escudero E, Hurtado ME, Swenson ER, Wesson DE, Schreiner GF, Schoene RB, Johnson RJ, Hurtado A. Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol Spring 2004; 5 (Suppl. 01) 61-69.
  • 13 Hornbein TF. The high-altitude brain. J Exp Biol 2001; 204: 3129-3132.
  • 14 Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gradette B, Jammes Y. Operation Everest III (Codex ‘97): the effect of simulated severe hypobaric hypoxia on blood lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation 2001; 49: 307-314.
  • 15 Neubauer J. Invited review: physiological and pathological responses to intermittent hypoxia. Am J Physiol 2001; 90: 1593-1599.
  • 16 Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 2002; 180 (Suppl. 02) 107-119.
  • 17 Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 1993; 84: 407-412.
  • 18 Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47 (Suppl. 03) 469-474.
  • 19 Paglia DE, Valentine WN. Studies of the quantitative and qualitative characerization of erythrocyte peroxidise. J Lab Clin Med 1967; 70: 158-169.
  • 20 Aebi H. Catalase in vitro. Meth Enzymol 1984; 105: 121-126.
  • 21 Schäfer M. Hämatologische und biochemische Parameter des gesunden Pferdes. In: Handbuch Pferdepraxis. Huskamp B, Dietz O. Hrsg. Stuttgart: Enke; 1999
  • 22 Wickler SJ, Anderson TP. Haematological changes and athletic performance in horses in response to high altitude (3,800 m). Am J Physiol Regul Integr Comp Physiol 2000; 279 (Suppl. 04) R 1176-1181.
  • 23 Foreman JH, Waldsmith JK, Lalum RB, Jeffcot LB. Environmental stress and 3-day eventing: effects of altitude. Equine Vet J Suppl 1999 Jul; 30: 394-397.
  • 24 Wickler SJ, Greene HM, Cogger EA, Foster LA, Braun W. Altitude acclimatization in horses and mules. US Davis CEH Research Report 2003: Performance.
  • 25 Kozlov SA. Adaptation to hypoxia as a factor enhancing work capacity. Vestn Ross Akad Med Nauk 1997; (5): 46-50.
  • 26 Higuchi M. Low density lipoproteine cytotoxicity induced by free radicals. J Lipid Res 1983; 24: 1070-1076.
  • 27 Fuchs HJ, Borders Jr CL. Affinity inactivation of bovine Cu, Zn superoxide dismutase by hydroperoxide anion, HO2 –. Biochem Biophys Res Commun 1983; 116 (Suppl. 03) 1107-1113.
  • 28 Robertson JD, Maughan RJ, Duthie GG. Increased blood antioxidant systems of runners in response to training load. Clin Sci 1991; 80: 611-618.
  • 29 Balogh N, Gaal T, Ribiczeyne PS, Petri A. Biochemical and antioxidant changes in plasma and erythrocytes of pentathlon horses before and after exercise. Vet Clin Pathol 2001; 30 (Suppl. 04) 214-218.
  • 30 Taylor RP, Ciccolo JT, Starnes JW. Effect of exercise training on the ability of the rat heart to tolerate hydrogen peroxyde. Cardiovasc Res 2003; 58: 575-581.
  • 31 Evans DL, Rainger JE, Hodgson DR, Eaton MD, Rose RJ. The effect of intensity and duration of training on blood lactate concentrations during and after exercise. In: Equine Exercise Physiology 4. Proc. 4th International Conference on Equine Exercise Physiology. Robinson NE. ed. R and W Publications; Newmarket UK: Equine Vet J Suppl 1995. 18 422-425.
  • 32 Eaton MD, Evans DL, Hodgson DR, Rose RJ. Maximal accumulated oxygen deficit in thoroughbred horses. J Applied Physiol 1995; 78: 1564-1568.