Semin Neurol 2016; 36(03): 298-305
DOI: 10.1055/s-0036-1582134
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetic Determinants of Risk, Severity, and Outcome in Intracerebral Hemorrhage

Guido J. Falcone
1   Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
2   Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
3   Department of Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
,
Jonathan Rosand
1   Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
2   Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
3   Department of Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
23 May 2016 (online)

Abstract

Spontaneous, nontraumatic intracerebral hemorrhage (ICH) is the most severe manifestation of common forms of cerebral small vessel disease. Although ICH represents only 15% of all strokes, it accounts for a large proportion of stroke-related costs and mortality. Preventive and acute treatments remain limited. Because genetic variation contributes substantially to ICH, genomic analyses constitute a powerful tool to identify new biological mechanisms involved in its occurrence. Through translational research efforts, these newly identified mechanisms can become targets for innovative therapeutic interventions. Here, the authors summarize the most recent genetic discoveries for ICH. They also introduce the Platform for Accelerating Genetic Discovery for Cerebrovascular Disease, a newly created resource that aims to create a common workspace for genetic analyses that will bring together 100,000 stroke cases and suitable controls from numerous institutions in several countries.

 
  • References

  • 1 Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373 (9675) 1632-1644
  • 2 Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001; 344 (19) 1450-1460
  • 3 van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010; 9 (2) 167-176
  • 4 O'Donnell HC, Rosand J, Knudsen KA , et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000; 342 (4) 240-245
  • 5 Morgenstern LB, Hemphill III JC, Anderson C , et al; American Heart Association Stroke Council and Council on Cardiovascular Nursing. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2010; 41 (9) 2108-2129
  • 6 Arima H, Tzourio C, Anderson C , et al; PROGRESS Collaborative Group. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke 2010; 41 (2) 394-396
  • 7 Woo D, Sauerbeck LR, Kissela BM , et al. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study. Stroke 2002; 33 (5) 1190-1195
  • 8 Devan WJ, Falcone GJ, Anderson CD , et al; International Stroke Genetics Consortium. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013; 44 (6) 1578-1583
  • 9 Tabangin ME, Woo JG, Martin LJ. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc 2009; 3 (Suppl. 07) S41
  • 10 Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27 (8) 1133-1163
  • 11 Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 2007; 16 (4) 309-330
  • 12 Neale BM. Introduction to linkage disequilibrium, the HapMap, and imputation. Cold Spring Harb Protoc 2010; 2010 (3) pdb.top74
  • 13 Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet 2008; 16 (5) 635-643
  • 14 Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 2010; 86 (1) 6-22
  • 15 Bick D, Dimmock D. Whole exome and whole genome sequencing. Curr Opin Pediatr 2011; 23 (6) 594-600
  • 16 Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982; 32 (8) 871-876
  • 17 Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 2012; 83 (2) 124-137
  • 18 Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001; 56 (4) 537-539
  • 19 Falcone GJ, Malik R, Dichgans M, Rosand J. Current concepts and clinical applications of stroke genetics. Lancet Neurol 2014; 13 (4) 405-418
  • 20 Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 2008; 9 (4) 255-266
  • 21 Visscher PM, Medland SE, Ferreira MAR , et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2006; 2 (3) e41
  • 22 Vahedi K, Kubis N, Boukobza M , et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 2007; 38 (5) 1461-1464
  • 23 Vahedi K, Alamowitch S. Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 2011; 24 (1) 63-68
  • 24 Gould DB, Phalan FC, van Mil SE , et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006; 354 (14) 1489-1496
  • 25 Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987; 18 (2) 311-324
  • 26 Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983; 14 (6) 924-928
  • 27 Zhang-Nunes SX, Maat-Schieman MLC, van Duinen SG, Roos RAC, Frosch MP, Greenberg SM. The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 2006; 16 (1) 30-39
  • 28 Weng Y-C, Sonni A, Labelle-Dumais C , et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol 2012; 71 (4) 470-477
  • 29 Jeanne M, Labelle-Dumais C, Jorgensen J , et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet 2012; 90 (1) 91-101
  • 30 Rannikmäe K, Davies G, Thomson PA , et al; METASTROKE Consortium; CHARGE WMH Group; ISGC ICH GWAS Study Collaboration; WMH in Ischemic Stroke GWAS Study Collaboration; International Stroke Genetics Consortium. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 2015; 84 (9) 918-926
  • 31 Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 2014; 66 (9) 616-623
  • 32 Rannikmäe K, Samarasekera N, Martînez-Gonzâlez NA, Al-Shahi Salman R, Sudlow CLM. Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2013; 84 (8) 901-908
  • 33 Biffi A, Sonni A, Anderson CD , et al; International Stroke Genetics Consortium. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010; 68 (6) 934-943
  • 34 Falcone GJ, Radmanesh F, Brouwers HB , et al; International Stroke Genetics Consortium. APOE ε variants increase risk of warfarin-related intracerebral hemorrhage. Neurology 2014; 83 (13) 1139-1146
  • 35 Woo D, Falcone GJ, Devan WJ , et al; International Stroke Genetics Consortium. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet 2014; 94 (4) 511-521
  • 36 Fornage M, Debette S, Bis JC , et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol 2011; 69 (6) 928-939
  • 37 Verhaaren BFJ, Debette S, Bis JC , et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet 2015; 8 (2) 398-409
  • 38 Wang Y, Devereux W, Stewart TM, Casero Jr RA. Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem 1999; 274 (31) 22095-22101
  • 39 Wang Y, Devereux W, Stewart TM, Casero Jr RA. Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N1-acetyltransferase (SSAT) gene. Biochem J 2001; 355 (Pt 1) 45-49
  • 40 Igarashi K, Kashiwagi K. Use of polyamine metabolites as markers for stroke and renal failure. Methods Mol Biol 2011; 720: 395-408
  • 41 Dempsey RJ, Başkaya MK, Doğan A. Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery 2000; 47 (2) 399-404 , discussion 404–406
  • 42 Haitina T, Lindblom J, Renström T, Fredriksson R. Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 2006; 88 (6) 779-790
  • 43 Anderson CD, Biffi A, Rahman R , et al; International Stroke Genetics Consortium. Common mitochondrial sequence variants in ischemic stroke. Ann Neurol 2011; 69 (3) 471-480
  • 44 Alwan H, Ehret G, Ponte B , et al. Heritability of ambulatory and office blood pressure in the Swiss population. J Hypertens 2015; 33 (10) 2061-2067
  • 45 Ehret GB, Munroe PB, Rice KM , et al; International Consortium for Blood Pressure Genome-Wide Association Studies; CARDIoGRAM Consortium; CKDGen Consortium; KidneyGen Consortium; EchoGen Consortium; CHARGE-HF Consortium. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478 (7367) 103-109
  • 46 Falcone GJ, Biffi A, Devan WJ , et al; International Stroke Genetics Consortium. Burden of risk alleles for hypertension increases risk of intracerebral hemorrhage. Stroke 2012; 43 (11) 2877-2883
  • 47 Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971; 30 (3) 536-550
  • 48 Falcone GJ, Biffi A, Devan WJ , et al; GOCHA Investigators. Burden of blood pressure-related alleles is associated with larger hematoma volume and worse outcome in intracerebral hemorrhage. Stroke 2013; 44 (2) 321-326
  • 49 Biffi A, Anderson CD, Jagiella JM , et al; International Stroke Genetics Consortium. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol 2011; 10 (8) 702-709
  • 50 Brouwers HB, Biffi A, McNamara KA , et al. Apolipoprotein E genotype is associated with CT angiography spot sign in lobar intracerebral hemorrhage. Stroke 2012; 43 (8) 2120-2125
  • 51 Brouwers HB, Biffi A, Ayres AM , et al. Apolipoprotein E genotype predicts hematoma expansion in lobar intracerebral hemorrhage. Stroke 2012; 43 (6) 1490-1495