Semin Thromb Hemost 2015; 41(06): 659-664
DOI: 10.1055/s-0035-1556731
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Thrombosis and Hemorrhage in Diabetic Retinopathy: A Perspective from an Inflammatory Standpoint

Nivetha Murugesan
1   Section on Vascular Cell Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts
2   Department of Medicine, Harvard Medical School, Boston, Massachusetts
,
Tuna Üstunkaya
3   Hacettepe University Medical School, Ankara, Turkey
,
Edward P. Feener
1   Section on Vascular Cell Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts
2   Department of Medicine, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
25 August 2015 (online)

Abstract

Retinal ischemia and hemorrhage are hallmarks of worsening diabetic retinopathy, which can lead to neovascularization, macular edema, and severe vision loss. Although diabetes alters expression of clotting factors and their activities, and increases retinal microthromboses, the effects of thrombotic processes on the pathogenesis of diabetic retinopathy are not fully understood. In addition to the roles of coagulation and fibrinolytic cascades in thrombosis and hemostasis, components in these systems also mediate multiple effects on the vasculature that promote inflammation. Plasma kallikrein, thrombin, and urokinase are increased in diabetic retinopathy, and exert proinflammatory effects that contribute to retinal vascular dysfunction. The accumulation and activation of these and additional coagulation factors in the vitreous due to hemorrhage and chronic retinal injury in the diabetic retina may contribute to worsening of retinal inflammation and capillary dysfunction, which lead to retinal ischemia and edema. Further understanding of the role for specific coagulation factors in diabetic retinopathy may suggest new therapeutic opportunities for this vision-threatening disease.

 
  • References

  • 1 Yau JW, Rogers SL, Kawasaki R , et al; Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35 (3) 556-564
  • 2 Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med 2012; 366 (13) 1227-1239
  • 3 Aiello LP, Avery RL, Arrigg PG , et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331 (22) 1480-1487
  • 4 Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med 2007; 262 (2) 157-172
  • 5 Grant PJ, Kruithof EKO, Felley CP, Felber JP, Bachmann F. Short-term infusions of insulin, triacylglycerol and glucose do not cause acute increases in plasminogen activator inhibitor-1 concentrations in man. Clin Sci (Lond) 1990; 79 (5) 513-516
  • 6 Liu J, Feener EP. Plasma kallikrein-kinin system and diabetic retinopathy. Biol Chem 2013; 394 (3) 319-328
  • 7 Hammes HP, Lin J, Renner O , et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002; 51 (10) 3107-3112
  • 8 Zheng L, Howell SJ, Hatala DA, Huang K, Kern TS. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes 2007; 56 (2) 337-345
  • 9 Hammes HP, Lin J, Wagner P , et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 2004; 53 (4) 1104-1110
  • 10 Miyamoto K, Khosrof S, Bursell SE , et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 1999; 96 (19) 10836-10841
  • 11 Iliaki E, Poulaki V, Mitsiades N, Mitsiades CS, Miller JW, Gragoudas ES. Role of alpha 4 integrin (CD49d) in the pathogenesis of diabetic retinopathy. Invest Ophthalmol Vis Sci 2009; 50 (10) 4898-4904
  • 12 Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension 2009; 53 (2) 175-181
  • 13 Abiko T, Abiko A, Clermont AC , et al. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 2003; 52 (3) 829-837
  • 14 Noda K, Nakao S, Zandi S, Sun D, Hayes KC, Hafezi-Moghadam A. Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. FASEB J 2014; 28 (5) 2038-2046
  • 15 Miyamoto K, Khosrof S, Bursell SE , et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 2000; 156 (5) 1733-1739
  • 16 Ramírez M, Wu Z, Moreno-Carranza B , et al. Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF- and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 2011; 52 (12) 8944-8950
  • 17 Tolentino MJ, Miller JW, Gragoudas ES , et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996; 103 (11) 1820-1828
  • 18 Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology 2014; 121 (9) 1783-1789
  • 19 Yamashiro K, Tsujikawa A, Ishida S , et al. Platelets accumulate in the diabetic retinal vasculature following endothelial death and suppress blood-retinal barrier breakdown. Am J Pathol 2003; 163 (1) 253-259
  • 20 Boeri D, Maiello M, Lorenzi M. Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes 2001; 50 (6) 1432-1439
  • 21 Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24 (8) 1476-1485
  • 22 Matsubara Y, Murata M, Maruyama T , et al. Association between diabetic retinopathy and genetic variations in alpha2beta1 integrin, a platelet receptor for collagen. Blood 2000; 95 (5) 1560-1564
  • 23 Gao BB, Clermont A, Rook S , et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 2007; 13 (2) 181-188
  • 24 Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 2008; 7 (6) 2516-2525
  • 25 Clermont A, Chilcote TJ, Kita T , et al. Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 2011; 60 (5) 1590-1598
  • 26 Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci 2013; 54 (2) 1086-1094
  • 27 Liu J, Gao BB, Feener EP. Proteomic identification of novel plasma kallikrein substrates in the astrocyte secretome. Transl Stroke Res 2010; 1 (4) 276-286
  • 28 Liu J, Gao BB, Clermont AC , et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med 2011; 17 (2) 206-210
  • 29 Abdallah RT, Keum JS, El-Shewy HM , et al. Plasma kallikrein promotes epidermal growth factor receptor transactivation and signaling in vascular smooth muscle through direct activation of protease-activated receptors. J Biol Chem 2010; 285 (45) 35206-35215
  • 30 Chahed S, Leroyer AS, Benzerroug M , et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 2010; 59 (3) 694-701
  • 31 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10 (7) 1355-1362
  • 32 Müller F, Mutch NJ, Schenk WA , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (6) 1143-1156
  • 33 Bastiaans J, van Meurs JC, Mulder VC , et al. The role of thrombin in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2014; 55 (7) 4659-4666
  • 34 Bastiaans J, van Meurs JC, van Holten-Neelen C , et al. Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders?. Graefes Arch Clin Exp Ophthalmol 2013; 251 (7) 1723-1733
  • 35 Cowan C, Muraleedharan CK, O'Donnell III JJ , et al. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2014; 55 (8) 4944-4951
  • 36 Das A, McGuire PG, Eriqat C , et al. Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci 1999; 40 (3) 809-813
  • 37 El-Remessy AB, Franklin T, Ghaley N , et al. Diabetes-induced superoxide anion and breakdown of the blood-retinal barrier: role of the VEGF/uPAR pathway. PLoS ONE 2013; 8 (8) e71868
  • 38 Navaratna D, Menicucci G, Maestas J, Srinivasan R, McGuire P, Das A. A peptide inhibitor of the urokinase/urokinase receptor system inhibits alteration of the blood-retinal barrier in diabetes. FASEB J 2008; 22 (9) 3310-3317
  • 39 Bergerhoff K, Clar C, Richter B. Aspirin in diabetic retinopathy. A systematic review. Endocrinol Metab Clin North Am 2002; 31 (3) 779-793
  • 40 Salinero-Fort MA, San Andrés-Rebollo FJ, de Burgos-Lunar C, Arrieta-Blanco FJ, Gómez-Campelo P ; MADIABETES Group Four-year incidence of diabetic retinopathy in a Spanish cohort: the MADIABETES study. PLoS ONE 2013; 8 (10) e76417
  • 41 MacDonald D. The ABCs of RVO: a review of retinal venous occlusion. Clin Exp Optom 2014; 97 (4) 311-323
  • 42 Santiago JG, Walia S, Sun JK , et al. Influence of diabetes and diabetes type on anatomic and visual outcomes following central rein vein occlusion. Eye (Lond) 2014; 28 (3) 259-268