Planta Med 2015; 81(09): 696-704
DOI: 10.1055/s-0035-1546006
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antidiabetic Effects of Aqueous Infusions of Artemisia herba-alba and Ajuga iva in Alloxan-Induced Diabetic Rats

Amel Boudjelal
1   Département de Microbiologie et Biochimie, Faculté des Sciences, Université de Mʼsila, Mʼsila, Algérie
,
Laura Siracusa
2   Istituto del CNR di Chimica Biomolecolare, Catania, Italy
,
Cherifa Henchiri
3   Laboratoire de Biochimie Appliquée, Université Badji Mokhtar, Annaba, Algérie
,
Madani Sarri
4   Département des Sciences de la Nature et de la Vie, Faculté des Sciences, Université de Mʼsila, Mʼsila, Algérie
,
Benkhaled Abderrahim
1   Département de Microbiologie et Biochimie, Faculté des Sciences, Université de Mʼsila, Mʼsila, Algérie
,
Faiza Baali
4   Département des Sciences de la Nature et de la Vie, Faculté des Sciences, Université de Mʼsila, Mʼsila, Algérie
,
Giuseppe Ruberto
2   Istituto del CNR di Chimica Biomolecolare, Catania, Italy
› Author Affiliations
Further Information

Publication History

received 23 September 2014
revised 30 March 2015

accepted 01 April 2015

Publication Date:
27 May 2015 (online)

Abstract

The aqueous infusions of the aerial parts of Artemisia herba-alba Asso and Ajuga iva Schreber, prepared in accordance with the traditional procedure used in the local folk medicine, have been analysed for their composition and content of phytochemical constituents and examined for their antidiabetic effectiveness in alloxan-induced diabetic rats. Oral administration of A. herba-alba and A. iva infusions was studied in normal and alloxan-induced diabetic rats, which were randomly divided into nine groups, each group consisting of six animals. The drug preparations (100, 200, and 300 mg/kg b. w.) of each plant were given orally to the rats of each group twice daily for 15 days. Compositional analysis of the aqueous infusions revealed the presence of several polyphenols as main components. A. herba-alba infusion was characterised by mono- and di-cinnamoylquinic acids, with 5-caffeoylquinic (chlorogenic) acid being the main compound, followed by 3,5-dicaffeoylquinic acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant among flavonoids. On the other hand, A. iva showed the exclusive presence of flavonoids, with the flavanone naringin present in relatively high levels together with several apigenin (flavone) derivatives. Oral administration of 300 mg/kg b. w. of the aqueous infusions of A. herba-alba and A. iva exhibited a significant reduction in blood glucose content, showing a much more efficient antidiabetic activity compared to glibenclamide, the oral hypoglycaemic agent used as a positive control in this study. These results suggest that A. herba-alba and A. iva possess significant antidiabetic activity, as they were able to improve the biochemical damage in alloxan-induced diabetes in rats.

 
  • References

  • 1 Wild S, Rolgic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-1053
  • 2 Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J 2005; 172: 213-226
  • 3 de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 2001; 50: 1863-1871
  • 4 Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 2008; 19: 129-137
  • 5 Marrif HI, Ali BH, Hassan KM. Some pharmacological studies on Artemisia herba-alba (Asso) in rabbits and mice. J Ethnopharmacol 1995; 49: 51-55
  • 6 Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine 1995; 2: 137-189
  • 7 Subramonıam A, Pushpangadan P, Rajasekharan S, Evans DA, Latha G, Valsaraj R. Effects of Artemisia pallen on blood glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 1996; 50: 13-17
  • 8 Alman R. Recent research in indigenous anti-diabetic medicinal plants in overall assessment. Indian J Physiol Pharmacol 1970; 14: 65-76
  • 9 Rajasekharan S, Tuli SN. Viyaysai (Pterocarpus marsupium) in the treatment of “Madhumeha” (diabetes mellitus) a clinical trial. J Res Indian Med Yoga Homeopath 1976; 9: 76-78
  • 10 Prabhakar PK, Doble MA. Target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 2008; 4: 291-308
  • 11 Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Medica 2014; 80: 354-377
  • 12 Boudjelal A, Henchiri C, Sari M, Sarri D, Hendel N, Benkhaled A, Ruberto G. Herbalists and wild medicinal plants in MʼSila (North Algeria): an ethnopharmacology survey. J Ethnopharmacol 2013; 148: 395-402
  • 13 Abu-Irmaileh BE, Afifi FU. Herbal medicine in Jordan with special emphasis on commonly used herbs. J Ethnopharmacol 2003; 89: 193-197
  • 14 Jarald E, Balakrishnan JS, Chandra DJ. Diabetes and herbal medicines. Iranian J Pharmacol Ther 2008; 7: 97-106
  • 15 Allali H, Benmehdi H, Dib MA, Tabti B, Ghalem S, Benabadji N. Phytotherapy of diabetes in west Algeria. Asian J Chem 2008; 20: 2701-2710
  • 16 Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 2007; 110: 105-117
  • 17 Zyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 1997; 58: 45-54
  • 18 Boudjelal A, Henchiri C, Siracusa L, Sari M, Ruberto G. Compositional analysis and in-vivo anti-diabetic activity of wild Algerian Marrubium vulgare L. infusion. Fitoterapia 2012; 83: 286-292
  • 19 Saleh N, El-Negoumy SI, Abd-Alla MF, Abou-Zaid MM, Dellamonica G, Chopin J. Flavonoids glycosides of Artemisia monosperma and A. herba-alba . Phytochemistry 1985; 24: 201-203
  • 20 Saleh N, El-Negoumy SI, Abou-Zaid MM. Flavonoids of Artemisia judaica, A. monosperma and A. herba-alba . Phytochemistry 1987; 26: 3059-3064
  • 21 Salah SM, Jager AK. Two flavonoids from Artemisia herba-alba Asso with in vitro GABAA-benzodiazepine receptor activity. J Ethnopharmacol 2005; 99: 145-146
  • 22 Mohamed AEH, El-Sayed MA, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS. Chemical constituents and biological activities of Artemisia herba-alba . Rec Nat Prod 2010; 4: 1-25
  • 23 Dahmani-Hamzaoui N, Salido NS, Linares-Palomino PJ, Baaliouamer A, Altarejos J. On-line radical scavenging detection and characterization of antioxidants from Artemisia herba-alba . Helv Chim Acta 2012; 95: 564-576
  • 24 Markham KR. Techniques of flavonoid identification. 1st. edition. UK: Academic Press; 1982
  • 25 Clifford MN, Johnston KL, Knight S, Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 2003; 51: 2900-2911
  • 26 Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J Agric Food Chem 2005; 53: 3821-3832
  • 27 Claeys M, Li Q, van den Heuvel H, Dillen L. Mass spectrometric studies on flavonoid glycosides. In: Newton RP, Walton TJ, editors Application of modern mass spectrometry in plant sciences. Oxford: Clarendon Press; 1996: 182-194
  • 28 Stobiecki M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry 2000; 54: 237-256
  • 29 Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 2004; 39: 1-15
  • 30 Israili ZH, Lyoussi B. Ethnopharmacology of the plants of genus Ajuga . Pak J Pharm Sci 2009; 22: 425-462
  • 31 Coll J, Tandrón YA. Neo-clerodanediterpenoids from Ajuga: structural elucidation and biological activity. Phytochem Rev 2008; 7: 25-49
  • 32 Wessner M, Champion B, Girault JP, Kaouadji N, Saidi B, Lafont R. Ecdysteroids from Ajuga iva . Phytochemistry 1992; 31: 3785-3788
  • 33 El-Hilaly J, Lyoussi B, Wibo M, Morel N. Vasorelaxant effect of the aqueous extract of Ajuga iva in rat aorta. J Ethnopharmacol 2004; 93: 69-74
  • 34 Ghedira K, Chemli R, Richard B, Zeches M, Le Men-Olivier L. Contribution to the study of the traditional Tunisian pharmacopeia: study of aerial parts of Ajuga iva (L.) Schreb. Plant Med Phytother 1991; 25: 100-111
  • 35 Taleb-Senouci D, Ghomari H, Krouf D, Bouderbala S, Prost J, Lacaille-Dubois MA, Bouchenak M. Antioxidant effect of Ajuga iva aqueous extract in streptozotocin-induced diabetic rats. Phytomedicine 2009; 16: 623-631
  • 36 Taleb-Senouci D, Lacaille-Dubois MA, Bouchenak M. Ajuga iva extract improves reverse cholesterol transport in streptozotocin-induced diabetic rat. J Pharm Pharmacol 2012; 64: 1188-1194
  • 37 Stocker P, Yousfi M, Djerridane O, Perrier J, Amziani R, El Boustani S, Moulin A. Effect of flavonoids from various Mediterranean plants on enzymatic activity of intestinal carboxylesterase. Biochimie 2004; 86: 919-925
  • 38 Pinent M, Castell A, Baiges I, Montagut G, Arola L, Ardévol A. Bioactivity of flavonoids on insulin-secreting cells. Compr Rev Food Sci Food Saf 2008; 7: 299-308
  • 39 Rauter P, Martins A, Borges C, Mota-Filipe H, Pinto R, Sepodes B, Justino J. Antihyperglycaemic and protective effects of flavonoids on streptozotocin-induced diabetic rats. Phytother Res 2010; 24: S133-S138
  • 40 Kato A, Nasu N, Takebayashi K, Adachi I, Minami Y, Sanae F, Asano N, Watson AA, Nash RJ. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorilase. J Agric Food Chem 2008; 56: 4469-4473
  • 41 Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atheroschlerosis in diabetic LDL receptor-deficient mice. Diabetes 2006; 55: 2180-2191
  • 42 Cazarolli LH, Demarchi Kappel V, Fontana Pereira D, Hunger Moresco H, Costa Brighente IM, Pizzolatti MG, Barreto Silva FRM. Anti-hyperglycaemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola . Fitoterapia 2012; 83: 1176-1183
  • 43 Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P. Antihyperglycaemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J Physiol Biochem 2012; 68: 307-318
  • 44 Purushotham A, Tian M, Belury MA. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Faohepatoma cells. Mol Nutr Food Res 2009; 53: 300-307
  • 45 Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11: 1365-1402
  • 46 Subash Babu P, Mainzen Prince PS. Antihyperglycaemic and antioxidant effect of hyponidd, an ayurvedic herbomineral formulation in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2004; 56: 1435-1442
  • 47 Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 2008; 26: 320-328
  • 48 Ong KW, Hsu A, Huat Tan BK. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 2012; 7: e32718
  • 49 Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastointestinal hormone secretion and glucose tolerance in humans: glycemic effect of chlorogenic acid and caffeine. Am J Clin Nutr 2003; 78: 728-733
  • 50 Matsui T, Ebuchi S, Fujise T, Abesundara KJM, Doi S, Yamada H, Matsumoto K. Strong antihyperglycemic effects of water-soluble fraction of of Brazilian propolis and its bioactive costituent, 3,4,5-tri-O-caffeoylquinic acid. Biol Pharm Bull 2004; 27: 1797-1803
  • 51 Srinivasan K, Ramarao P. Animals models in type 2 diabetes research: an overview. Indian J Med Res 2007; 125: 451-472
  • 52 Matteucci E, Giampietro O. Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research. J Ethnopharmacol 2008; 115: 163-172
  • 53 Hamdy AM, Al-Sayeda AN, Yousef MI, Sheweita SA. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 2002; 170: 221-228
  • 54 Hamza N, Berke B, Cheze C, Agli AN, Robinson P, Gin H, Moore N. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol 2010; 128: 513-518
  • 55 Iriadam M, Musa D, Hatice G, Baba F. Effects of two Turkish medicinal plants Artemisia herba-alba and Teucrium polium on blood glucose levels and other biochemical parameters in rabbits. J Cell Mol Biol 2006; 5: 19-24
  • 56 El Hilaly J, Lyoussi B. Hypoglycaemic effect of the lyophilised aqueous extract of Ajuga iva in normal and streptozotocin diabetic rats. J Ethnopharmacol 2002; 80: 109-113
  • 57 Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes Metab Syndr Clin Res Rev 2009; 3: 40-44
  • 58 Barham D, Trinder P. An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 1972; 97: 142-145
  • 59 Rifai N, Bachorik PS, Albers JJ. Lipids, lipoproteins and apolipoproteins. In: Burtis CA, Ashwood ER, editors Textbook of clinical chemistry. 3rd edition. Philadelphia: WB Saunders Comp; 1999: 809-861