Neurochirurgie Scan 2015; 03(03): 203-225
DOI: 10.1055/s-0034-1392464
Fortbildung
Neuroonkologie
© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Marker in der Neuropathologie: heutiger Stand und Perspektiven

Christian Eisenlöffel
,
Wolf C. Müller
Further Information

Publication History

Publication Date:
29 July 2015 (online)

Zusammenfassung

Molekulare Veränderungen können chromosomaler, genetischer oder epigenetischer Natur sein. Die Untersuchungsmethoden müssen dementsprechend ausgewählt, vorgehalten und vom Neuropathologen beherrscht werden. Dieser Artikel fasst die derzeit diagnostisch etablierten molekularen Analysen in der Neuropathologie zusammen. Es sollen in erster Linie molekulare Tests an primären Hirntumoren besprochen werden.

 
  • Literatur

  • 1 Coons AH, Creech HJ, Jones RN. Immunological properties of an antibody containing a fluorescent groop. Proc Soc Exp Biol Med 1941; 47: 200-202
  • 2 Nakane PK. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 1968; 16: 557-560
  • 3 Nakane PK, Pierce Jr GB. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem 1966; 14: 929-931
  • 4 Avrameas S, Uriel J. [Method of antigen and antibody labelling with enzymes and its immunodiffusion application]. CR hebdom Seances 'Acad Sciences Ser D: Scie Nats 1966; 262: 2543-2545
  • 5 Falini B, Taylor CR. New developments in immunoperoxidase techniques and their application. Arc Pathol Lab Med 1983; 107: 105-117
  • 6 Louis DN, Ohgaki H, Wiestler OD et al. (eds). WHO classification of tumours of the central nervous system. Lyon: IARC; 2007
  • 7 Louis DN, Perry A, Burger P et al. International Society Of Neuropathology – Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 2014; 24: 429-435
  • 8 Reifenberger J, Reifenberger G, Liu L et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 1994; 145: 1175-1190
  • 9 von Deimling A, Fimmers R, Schmidt MC et al. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J Neuropathol Exp neurol 2000; 59: 544-558
  • 10 Hartmann C, Mueller W, von Deimling A. Pathology and molecular genetics of oligodendroglial tumors. J Mol Med 2004; 82: 638-655
  • 11 Hartmann C, Mueller W, Lass U et al. Molecular genetic analysis of oligodendroglial tumors. J Neuropathol Exp Neurol 2005; 64: 10-14
  • 12 von Deimling A, Bender B, Louis DN et al. A rapid and non-radioactive PCR based assay for the detection of allelic loss in human gliomas. Neuropathol Appl Neurobiol 1993; 19: 524-529
  • 13 Griffin CA, Burger P, Morsberger L et al. Identification of der (1; 19) (q10; p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol 2006; 65: 988-994
  • 14 Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473-1479
  • 15 Branle F, Lefranc F, Camby I et al. Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer 2002; 95: 641-655
  • 16 Jeuken JW, Sijben A, Bleeker FE et al. The nature and timing of specific copy number changes in the course of molecular progression in diffuse gliomas: further elucidation of their genetic “life story”. Brain Pathol 2011; 21: 308-320
  • 17 Fuller CE, Perry A. Fluorescence in situ hybridization (FISH) in diagnostic and investigative neuropathology. Brain Pathol 2002; 12: 67-86
  • 18 Lass U, Hartmann C, Capper D et al. Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas. Brain Pathol 2013; 23: 311-318
  • 19 Sahm F, Koelsche C, Meyer J et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol 2012; 123: 853-860
  • 20 Sahm F, Lass U, Herold-Mende C et al. Analysis of CIC-associated CpG island methylation in oligoastrocytoma. Neuropathol Appl Neurobiol 2013; 39: 831-836
  • 21 Sahm F, Reuss D, Koelsche C et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014; 128: 551-559
  • 22 van den Bent MJ, Carpentier AF, Brandes AA et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 2006; 24: 2715-2722
  • 23 Wick W, Hartmann C, Engel C et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27: 5874-5880
  • 24 Intergroup Radiation Therapy Oncology Group T. Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24: 2707-2714
  • 25 Cairncross G, Wang M, Shaw E et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31: 337-43
  • 26 van den Bent MJ, Brandes AA, Taphoorn MJ et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31: 344-350
  • 27 Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 2005; 352: 987-996
  • 28 Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New Engl J Med 2000; 343: 1350-1354
  • 29 Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 2005; 352: 997-1003
  • 30 Wick W, Platten M, Meisner C et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 2012; 13: 707-715
  • 31 Malmstrom A, Gronberg BH, Marosi C et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 2012; 13: 916-926
  • 32 Reifenberger G, Hentschel B, Felsberg J et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer 2012; 131: 1342-1350
  • 33 van den Bent MJ, Dubbink HJ, Sanson M et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol 2009; 27: 5881-5886
  • 34 Wick W, Meisner C, Hentschel B et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 2013; 81: 1515-1522
  • 35 Bady P, Sciuscio D, Diserens AC et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 2012; 124: 547-560
  • 36 Turcan S, Rohle D, Goenka A et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature (London) 2012; 483: 479-483
  • 37 Herman JG, Graff JR, Myohanen S et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821-9826
  • 38 Dupont JM, Tost J, Jammes H et al. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Analyt Biochem 2004; 333: 119-127
  • 39 Jeuken JW, Cornelissen SJ, Vriezen M et al. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Invest 2007; 87: 1055-1065
  • 40 Lorente A, Mueller W, Urdangarin E et al. RASSF1A, BLU, NORE1A, PTEN and MGMT expression and promoter methylation in gliomas and glioma cell lines and evidence of deregulated expression of de novo DNMTs. Brain Pathology 2009; 19: 279-292
  • 41 Lorente A, Mueller W, Urdangarin E et al. Detection of methylation in promoter sequences by melting curve analysis-based semiquantitative real time PCR. BMC Cancer 2008; 8: 61
  • 42 Cairncross JG, Wang M, Jenkins RB et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014; 32: 783-790
  • 43 Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807-1812
  • 44 Balss J, Meyer J, Mueller W et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116: 597-602
  • 45 Hartmann C, Meyer J, Balss J et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118: 469-474
  • 46 Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature (London) 2009; 462: 739-744
  • 47 Xu W, Yang H, Liu Y et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17-30
  • 48 Lu C, Ward PS, Kapoor GS et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature (London) 2012; 483: 474-478
  • 49 Capper D, Weissert S, Balss J et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 2010; 20: 245-254
  • 50 Capper D, Zentgraf H, Balss J et al. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 2009; 118: 599-601
  • 51 Camelo-Piragua S, Jansen M, Ganguly A et al. Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol 2010; 119: 509-511
  • 52 Korshunov A, Meyer J, Capper D et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 2009; 118: 401-405
  • 53 van den Bent MJ, Dubbink HJ, Marie Y et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clinical Cancer Res 2010; 16: 1597-1604
  • 54 Weller M, Felsberg J, Hartmann C et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27: 5743-5750
  • 55 Hartmann C, Hentschel B, Wick W et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010; 120: 707-718
  • 56 Schumacher T, Bunse L, Pusch S et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature (London) 2014; 512: 324-327
  • 57 Pfister S, Janzarik WG, Remke M et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008; 118: 1739-1749
  • 58 Bar EE, Lin A, Tihan T et al. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 2008; 67: 878-887
  • 59 Jones DT, Kocialkowski S, Liu L et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008; 68: 8673-8677
  • 60 Jones DT, Gronych J, Lichter P et al. MAPK pathway activation in pilocytic astrocytoma. Cellular and molecular life sciences: CMLS 2012; 69: 1799-1811
  • 61 Hawkins C, Walker E, Mohamed N et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011; 17: 4790-4798
  • 62 Tian Y, Rich BE, Vena N et al. Detection of KIAA1549-BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. The Journal of molecular diagnostics: JMD 2011; 13: 669-677
  • 63 Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4: 937-947
  • 64 Schindler G, Capper D, Meyer J et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121: 397-405
  • 65 Capper D, Preusser M, Habel A et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 2011; 122: 11-19
  • 66 Capper D, Berghoff AS, Magerle M et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 2012; 123: 223-233
  • 67 Chappe C, Padovani L, Scavarda D et al. Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF (V600E) mutation and expression. Brain Pathol 2013; 23: 574-583
  • 68 Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl J Med 2010; 363: 809-819
  • 69 Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neuro-Oncol 2013; 114: 237-240
  • 70 Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 2014; 14: 258
  • 71 Skrypek M, Foreman N, Guillaume D et al. Pilomyxoid astrocytoma treated successfully with vemurafenib. Pediat Blood Cancer 2014; 61: 2099-2100
  • 72 Schwartzentruber J, Korshunov A, Liu XY et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature (London) 2012; 482: 226-231
  • 73 Wu G, Broniscer A, McEachron TA et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genet 2012; 44: 251-253
  • 74 Lewis PW, Elsaesser SJ, Noh KM et al. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 2010; 107: 14075-14080
  • 75 Buczkowicz P, Hoeman C, Rakopoulos P et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature genetics 2014; 46: 451-456
  • 76 Liu XY, Gerges N, Korshunov A et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 2012; 124: 615-625
  • 77 Wiestler B, Capper D, Holland-Letz T et al. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 2013; 126: 443-451
  • 78 Heaphy CM, de Wilde RF, Jiao Y et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011; 333: 425
  • 79 Reuss DE, Sahm F, Schrimpf D et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 2015; 129 : 133-146
  • 80 Wiestler B, Capper D, Hovestadt V et al. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro-oncology 2014; 16: 1630-1638