Semin Musculoskelet Radiol 2014; 18(03): 318-331
DOI: 10.1055/s-0034-1375573
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Traumatic Myelopathy: Current Concepts in Imaging

Eline De Smet
1   Department of Radiology, Antwerp University Hospital, Edegem, Belgium
2   Department of Radiology, AZ Sint-Maarten, Duffel-Mechelen, Belgium
,
Filip M. Vanhoenacker
1   Department of Radiology, Antwerp University Hospital, Edegem, Belgium
2   Department of Radiology, AZ Sint-Maarten, Duffel-Mechelen, Belgium
3   Department of Radiology, Gent University Hospital, Gent, Belgium
,
Paul M. Parizel
1   Department of Radiology, Antwerp University Hospital, Edegem, Belgium
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2014 (online)

Abstract

Traumatic myelopathy is a frequent complication after spinal trauma. The prognosis is often very poor, and the condition has important socioeconomic consequences. Knowledge of the epidemiology and imaging features is mandatory to ensure correct diagnosis and timely intervention. Imaging studies play an increasing role in the diagnosis and follow-up of this condition. Computed tomography remains the first-line investigation whenever spinal cord injury is suspected. It may indicate the presence of spinal cord lesions by visualizing vertebral lesions, but it cannot assess the spinal cord itself. Magnetic resonance imaging (MRI) can depict possible spinal cord edema, hemorrhage, or transection, and it is essential in diagnosing and predicting the outcome of spinal cord injury. Follow-up should also be performed with MRI to evaluate long-term intramedullary changes. Diffusion-weighted imaging and diffusion tensor imaging are promising new techniques that allow very early detection of spinal cord injury by measuring the diffusion within the spinal cord, thereby providing information on white matter integrity. However, technical limitations of these new techniques prompt further investigation to improve specificity.

 
  • References

  • 1 Kraus JF, Franti CE, Riggins RS, Richards D, Borhani NO. Incidence of traumatic spinal cord lesions. J Chronic Dis 1975; 28 (9) 471-492
  • 2 National Spinal Cord Injury Statistical Centre. Spinal Cord Injury Facts and Figures at a Glance. February 2012 . Available at: https://www.nscisc.uab.edu/PublicDocuments/fact_figures_docs/Facts%202012%20Feb%20Final.pdf . Accessed March 31, 2013
  • 3 Oliver M, Inaba K, Tang A , et al. The changing epidemiology of spinal trauma: a 13-year review from a level I trauma centre. Injury 2012; 43 (8) 1296-1300
  • 4 Hagen EM, Eide GE, Rekand T, Gilhus NE, Gronning M. A 50-year follow-up of the incidence of traumatic spinal cord injuries in western Norway. Spinal Cord 2010; 48 (4) 313-318
  • 5 Cripps RA, Lee BB, Wing P, Weerts E, Mackay J, Brown D. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord 2011; 49 (4) 493-501
  • 6 Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?. Spinal Cord 2006; 44 (9) 523-529
  • 7 van den Berg ME, Castellote JM, Mahillo-Fernandez I, de Pedro-Cuesta J. Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 2010; 34 (3) 184-192 ; discussion 192
  • 8 Hagen EM, Rekand T, Gilhus NE, Grønning M. Traumatic spinal cord injuries—incidence, mechanisms and course. Tidsskr Nor Laegeforen 2012; 132 (7) 831-837
  • 9 National Spinal Cord Injury Statistical Centre. 2011 NSCISC Annual Statistical Report—Complete Public Version. Available at: https://www.nscisc.uab.edu/PublicDocuments /reports/pdf/2011%20NSCISC%20Annual%20Statistical%20Report%20-%20Complete%20Public%20Version.pdf . Accessed March 31, 2013
  • 10 Macciocchi S, Seel RT, Thompson N, Byams R, Bowman B. Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence. Arch Phys Med Rehabil 2008; 89 (7) 1350-1357
  • 11 Hart C, Williams E. Epidemiology of spinal cord injuries: a reflection of changes in South African society. Paraplegia 1994; 32 (11) 709-714
  • 12 DeVivo MJ, Chen Y. Trends in new injuries, prevalent cases, and aging with spinal cord injury. Arch Phys Med Rehabil 2011; 92 (3) 332-338
  • 13 Silberstein B, Rabinovich S. Epidemiology of spinal cord injuries in Novosibirsk, Russia. Paraplegia 1995; 33 (6) 322-325
  • 14 Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008; 25 (5) E2
  • 15 Kirshblum SC, Burns SP, Biering-Sorensen F , et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011; 34 (6) 535-546
  • 16 Hartkopp A, Brønnum-Hansen H, Seidenschnur AM, Biering-Sørensen F. Survival and cause of death after traumatic spinal cord injury. A long-term epidemiological survey from Denmark. Spinal Cord 1997; 35 (2) 76-85
  • 17 Lidal IB, Snekkevik H, Aamodt G, Hjeltnes N, Biering-Sørensen F, Stanghelle JK. Mortality after spinal cord injury in Norway. J Rehabil Med 2007; 39 (2) 145-151
  • 18 Hoffman JR, Wolfson AB, Todd K, Mower WR. Selective cervical spine radiography in blunt trauma: methodology of the National Emergency X-Radiography Utilization Study (NEXUS). Ann Emerg Med 1998; 32 (4) 461-469
  • 19 Stiell IG, Wells GA, Vandemheen KL , et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 2001; 286 (15) 1841-1848
  • 20 Panacek EA, Mower WR, Holmes JF, Hoffman JR ; NEXUS Group. Test performance of the individual NEXUS low-risk clinical screening criteria for cervical spine injury. Ann Emerg Med 2001; 38 (1) 22-25
  • 21 Stiell IG, Clement CM, McKnight RD , et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med 2003; 349 (26) 2510-2518
  • 22 Woodring JH, Lee C. Limitations of cervical radiography in the evaluation of acute cervical trauma. J Trauma 1993; 34 (1) 32-39
  • 23 Diaz Jr JJ, Aulino JM, Collier B , et al. The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role?. J Trauma 2005; 59 (4) 897-903 ; discussion 903–904
  • 24 Woodring JH, Lee C. The role and limitations of computed tomographic scanning in the evaluation of cervical trauma. J Trauma 1992; 33 (5) 698-708
  • 25 Goldberg AL, Rothfus WE, Deeb ZL , et al. The impact of magnetic resonance on the diagnostic evaluation of acute cervicothoracic spinal trauma. Skeletal Radiol 1988; 17 (2) 89-95
  • 26 Atlas SW, Regenbogen V, Rogers LF, Kim KS. The radiographic characterization of burst fractures of the spine. AJR Am J Roentgenol 1986; 147 (3) 575-582
  • 27 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983; 8 (8) 817-831
  • 28 Quint DJ. Indications for emergent MRI of the central nervous system. JAMA 2000; 283 (7) 853-855
  • 29 Phal PM, Anderson JC. Imaging in spinal trauma. Semin Roentgenol 2006; 41 (3) 190-195
  • 30 Pang D, Pollack IF. Spinal cord injury without radiographic abnormality in children—the SCIWORA syndrome. J Trauma 1989; 29 (5) 654-664
  • 31 Pang D. Spinal cord injury without radiographic abnormality in children, 2 decades later. Neurosurgery 2004; 55 (6) 1325-1342 ; discussion 1342–1343
  • 32 Cohen WA, Giauque AP, Hallam DK, Linnau KF, Mann FA. Evidence-based approach to use of MR imaging in acute spinal trauma. Eur J Radiol 2003; 48 (1) 49-60
  • 33 Crosby CG, Even JL, Song Y, Block JJ, Devin CJ. Diagnostic abilities of magnetic resonance imaging in traumatic injury to the posterior ligamentous complex: the effect of years in training. Spine J 2011; 11 (8) 747-753
  • 34 Kulkarni MV, Bondurant FJ, Rose SL, Narayana PA. 1.5 tesla magnetic resonance imaging of acute spinal trauma. Radiographics 1988; 8 (6) 1059-1082
  • 35 Hackney DB, Asato R, Joseph PM , et al. Hemorrhage and edema in acute spinal cord compression: demonstration by MR imaging. Radiology 1986; 161 (2) 387-390
  • 36 Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients. Radiology 2007; 243 (3) 820-827
  • 37 Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ. Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology 2001; 221 (3) 789-794
  • 38 Wang M, Dai Y, Han Y, Haacke EM, Dai J, Shi D. Susceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury. Magn Reson Imaging 2011; 29 (3) 365-373
  • 39 Guo LF, Wang G, Zhu XY, Liu C, Cui L. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds. Clin Neuroradiol 2013; 23 (2) 121-127
  • 40 Terae S, Takahashi C, Abe S, Kikuchi Y, Miyasaka K. Gd-DTPA-enhanced MR imaging of injured spinal cord. Clin Imaging 1997; 21 (2) 82-89
  • 41 Bilgen M, Abbe R, Narayana PA. Dynamic contrast-enhanced MRI of experimental spinal cord injury: in vivo serial studies. Magn Reson Med 2001; 45 (4) 614-622
  • 42 Shen H, Tang Y, Huang L , et al. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality. Int Orthop 2007; 31 (3) 375-383
  • 43 Bammer R, Fazekas F. Diffusion imaging of the human spinal cord and the vertebral column. Top Magn Reson Imaging 2003; 14 (6) 461-476
  • 44 Yin B, Tang Y, Ye J , et al. Sensitivity and specificity of in vivo diffusion-weighted MRI in acute spinal cord injury. J Clin Neurosci 2010; 17 (9) 1173-1179
  • 45 Barker GJ. Diffusion-weighted imaging of the spinal cord and optic nerve. J Neurol Sci 2001; 186 (Suppl. 01) S45-S49
  • 46 Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS. Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 2007; 57 (3) 625-630
  • 47 Wheeler-Kingshott CAM, Parker GJM, Symms MR , et al. ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn Reson Med 2002; 47 (1) 24-31
  • 48 Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17 (3) 1429-1436
  • 49 Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111 (3) 209-219
  • 50 De Bondt T, Van Hecke W, Veraart J , et al. Does the use of hormonal contraceptives cause microstructural changes in cerebral white matter? Preliminary results of a DTI and tractography study. Eur Radiol 2013; 23 (1) 57-64
  • 51 Kolbe SC, Marriott M, Walt Av , et al. Diffusion tensor imaging correlates of visual impairment in multiple sclerosis and chronic optic neuritis. Invest Ophthalmol Vis Sci 2012; 53 (2) 825-832
  • 52 Cao Z, Lv J, Wei X, Quan W. Appliance of preoperative diffusion tensor imaging and fiber tractography in patients with brainstem lesions. Neurol India 2010; 58 (6) 886-890
  • 53 Sedrak M, Gorgulho A, Bari A , et al. Diffusion tensor imaging (DTI) and colored fractional anisotropy (FA) mapping of the subthalamic nucleus (STN) and the globus pallidus interna (GPi). Acta Neurochir (Wien) 2010; 152 (12) 2079-2084
  • 54 Demir A, Ries M, Moonen CT , et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 2003; 229 (1) 37-43
  • 55 Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 2005; 26 (6) 1587-1594
  • 56 Mamata H, Jolesz FA, Maier SE. Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging 2005; 22 (1) 38-43
  • 57 Renoux J, Facon D, Fillard P, Huynh I, Lasjaunias P, Ducreux D. MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 2006; 27 (9) 1947-1951
  • 58 Hesseltine SM, Law M, Babb J , et al. Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol 2006; 27 (6) 1189-1193
  • 59 Yu C, Lin F, Li K , et al. Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 2008; 246 (1) 222-228
  • 60 Lee JW, Park KS, Kim JH , et al. Diffusion tensor imaging in idiopathic acute transverse myelitis. AJR Am J Roentgenol 2008; 191 (2) W52-7
  • 61 Ellingson BM, Ulmer JL, Kurpad SN, Schmit BD. Diffusion tensor MR imaging in chronic spinal cord injury. AJNR Am J Neuroradiol 2008; 29 (10) 1976-1982
  • 62 Ozanne A, Krings T, Facon D , et al. MR diffusion tensor imaging and fiber tracking in spinal cord arteriovenous malformations: a preliminary study. AJNR Am J Neuroradiol 2007; 28 (7) 1271-1279
  • 63 Ducreux D, Lepeintre JF, Fillard P, Loureiro C, Tadié M, Lasjaunias P. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol 2006; 27 (1) 214-216
  • 64 Kim JH, Wu TH, Budde MD, Lee JM, Song SK. Noninvasive detection of brainstem and spinal cord axonal degeneration in an amyotrophic lateral sclerosis mouse model. NMR Biomed 2011; 24 (2) 163-169
  • 65 Loy DN, Kim JH, Xie M, Schmidt RE, Trinkaus K, Song SK. Diffusion tensor imaging predicts hyperacute spinal cord injury severity. J Neurotrauma 2007; 24 (6) 979-990