Semin Neurol 2011; 31(5): 531-541
DOI: 10.1055/s-0031-1299791
© Thieme Medical Publishers

Towards Unveiling the Genetics of Neurodegenerative Diseases

Christina M. Lill1 , 2 , Lars Bertram1
  • 1Department of Vertebrate Genomics, Neuropsychiatric Genetics Group, Max Planck Institute for Molecular Genetics, Berlin
  • 2Departments of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
Further Information

Publication History

Publication Date:
21 January 2012 (online)

ABSTRACT

In addition to sharing several clinical, pathologic, and molecular characteristics, many neurodegenerative disorders show extensive familial histories suggesting a substantial contribution of genetic factors to disease causation and progression. In this review, the authors provide overviews of the status of current genetics research in Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Across these four disorders alone, nearly 60 different loci can now be considered as established to be involved in pathogenesis for both Mendelian and non-Mendelian disease forms. In addition to reviewing the most compelling of these loci based on current data from genome-wide association studies and next-generation sequencing projects, genes that have been linked to more than one disease entity are emphasized. Such overlapping findings could point to one or several common genetic and mechanistic denominators for neuronal death in neurodegeneration. Unveiling the identity of these and other genetic factors will not only improve our understanding of the underlying pathophysiology, but may also lead to new avenues for preventing and treating these devastating diseases.

REFERENCES

  • 1 Bertram L, Tanzi R E. The genetic epidemiology of neurodegenerative disease.  J Clin Invest. 2005;  115 (6) 1449-1457
  • 2 Soto C, Estrada L D. Protein misfolding and neurodegeneration.  Arch Neurol. 2008;  65 (2) 184-189
  • 3 Siontis KCM, Patsopoulos N A, Ioannidis JPA. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies.  Eur J Hum Genet. 2010;  18 (7) 832-837
  • 4 Cooper G M, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.  Nat Rev Genet. 2011;  12 (9) 628-640
  • 5 Lupski J R, Reid J G, Gonzaga-Jauregui C et al.. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy.  N Engl J Med. 2010;  362 (13) 1181-1191
  • 6 Johnson J O, Mandrioli J, Benatar M ITALSGEN Consortium et al. Exome sequencing reveals VCP mutations as a cause of familial ALS.  Neuron. 2010;  68 (5) 857-864
  • 7 Vilariño-Güell C, Wider C, Ross O A et al.. VPS35 mutations in Parkinson disease.  Am J Hum Genet. 2011;  89 (1) 162-167
  • 8 Cruts M, Van Broeckhoven C. Molecular genetics of Alzheimer's disease.  Ann Med. 1998;  30 (6) 560-565
  • 9 Tanzi R E, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective.  Cell. 2005;  120 (4) 545-555
  • 10 Gatz M, Reynolds C A, Fratiglioni L et al.. Role of genes and environments for explaining Alzheimer disease.  Arch Gen Psychiatry. 2006;  63 (2) 168-174
  • 11 Farrer L A, Cupples L A, Haines J L APOE and Alzheimer Disease Meta Analysis Consortium et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.  JAMA. 1997;  278 (16) 1349-1356
  • 12 Bertram L. Alzheimer's genetics in the GWAS era: a continuing story of ‘replications and refutations’;.  Curr Neurol Neurosci Rep. 2011;  11 (3) 246-253
  • 13 Bertram L, McQueen M B, Mullin K, Blacker D, Tanzi R E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.  Nat Genet. 2007;  39 (1) 17-23
  • 14 Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.  Hum Mutat. 2010;  31 (7) 763-780
  • 15 Chartier-Harlin M C, Dachsel J C, Vilariño-Güell C et al.. Translation initiator EIF4G1 mutations in familial Parkinson disease.  Am J Hum Genet. 2011;  89 (3) 398-406
  • 16 Zimprich A, Benet-Pagès A, Struhal W et al.. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.  Am J Hum Genet. 2011;  89 (1) 168-175
  • 17 Gasser T. Molecular pathogenesis of Parkinson disease: insights from genetic studies.  Expert Rev Mol Med. 2009;  11 e22
  • 18 Ramirez A, Heimbach A, Gründemann J et al.. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase.  Nat Genet. 2006;  38 (10) 1184-1191
  • 19 Paisán-Ruiz C, Guevara R, Federoff M et al.. Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations.  Mov Disord. 2010;  25 (12) 1791-1800
  • 20 Nalls M A, Plagnol V, Hernandez D G International Parkinson Disease Genomics Consortium et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies.  Lancet. 2011;  377 (9766) 641-649
  • 21 Do C B, Tung J Y, Dorfman E et al.. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease.  PLoS Genet. 2011;  7 (6) e1002141
  • 22 International Parkinson's Disease Genomics Consortium (IPDGC) . A two-stage meta-analysis identifies several new loci for Parkinson's disease.  PLoS Genet. 2011;  7 (6) e1002142
  • 23 Lill C M, Roehr J T, McQueen M B et al.. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. (Under review). 
  • 24 Stefansson H, Helgason A, Thorleifsson G et al.. A common inversion under selection in Europeans.  Nat Genet. 2005;  37 (2) 129-137
  • 25 Ezquerra M, Pastor P, Gaig C et al.. Different MAPT haplotypes are associated with Parkinson's disease and progressive supranuclear palsy.  Neurobiol Aging. 2011;  32 (3) 547 e11-e16
  • 26 Satake W, Nakabayashi Y, Mizuta I et al.. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.  Nat Genet. 2009;  41 (12) 1303-1307
  • 27 Sidransky E, Nalls M A, Aasly J O et al.. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.  N Engl J Med. 2009;  361 (17) 1651-1661
  • 28 Mackenzie I R, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.  Lancet Neurol. 2010;  9 (10) 995-1007
  • 29 Ingelsson M, Hyman B T. Disordered proteins in dementia.  Ann Med. 2002;  34 (4) 259-271
  • 30 Neumann M, Sampathu D M, Kwong L K et al.. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.  Science. 2006;  314 (5796) 130-133
  • 31 Dejesus-Hernandez M, Mackenzie I R, Boeve B F et al.. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS.  Neuron. 2011;  72 (2) 245-256
  • 32 Renton A E, Majounie E, Waite A The ITALSGEN Consortium et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD.  Neuron. 2011;  72 (2) 257-268
  • 33 Van Deerlin V M, Sleiman PMA, Martinez-Lage M et al.. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions.  Nat Genet. 2010;  42 (3) 234-239
  • 34 Shatunov A, Mok K, Newhouse S et al.. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study.  Lancet Neurol. 2010;  9 (10) 986-994
  • 35 Laaksovirta H, Peuralinna T, Schymick J C et al.. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study.  Lancet Neurol. 2010;  9 (10) 978-985
  • 36 Cruts M, Gijselinck I, van der Zee J et al.. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21.  Nature. 2006;  442 (7105) 920-924
  • 37 Schröder R, Watts GDJ, Mehta S G et al.. Mutant valosin-containing protein causes a novel type of frontotemporal dementia.  Ann Neurol. 2005;  57 (3) 457-461
  • 38 Mackenzie IRA, Neumann M, Bigio E H et al.. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update.  Acta Neuropathol. 2010;  119 (1) 1-4
  • 39 Lill C M, Abel O, Bertram L, Al-Chalabi A. Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases.  Amyotroph Lateral Scler. 2011;  12 (4) 238-249
  • 40 Kabashi E, Valdmanis P N, Dion P et al.. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis.  Nat Genet. 2008;  40 (5) 572-574
  • 41 Lagier-Tourenne C, Polymenidou M, Cleveland D W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration.  Hum Mol Genet. 2010;  19 (R1) R46-R64
  • 42 Deng H X, Chen W, Hong S T et al.. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia.  Nature. 2011;  477 (7363) 211-215
  • 43 van Es M A, Veldink J H, Saris CGJ et al.. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis.  Nat Genet. 2009;  41 (10) 1083-1087
  • 44 Elden A C, Kim H-J, Hart M P et al.. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.  Nature. 2010;  466 (7310) 1069-1075
  • 45 Ross O A, Rutherford N J, Baker M et al.. Ataxin-2 repeat-length variation and neurodegeneration.  Hum Mol Genet. 2011;  20 (16) 3207-3212

Lars BertramM.D. 

Head, Neuropsychiatric Genetics Group, Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics

Ihnestrasse 63, Room 204.1, 14195 Berlin, Germany

Email: bertram@molgen.mpg.de

    >