Semin Hear 2011; 32(3): 281-296
DOI: 10.1055/s-0031-1286622
© Thieme Medical Publishers

Potential Therapeutic Agents

Kathleen C.M. Campbell1 , Colleen G. Le Prell2
  • 1Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, Audiology Research, Southern Illinois University School of Medicine, Springfield, Illinois
  • 2Department of Speech, Language and Hearing Sciences, University of Florida, Gainesville, Florida
Further Information

Publication History

Publication Date:
23 September 2011 (online)

ABSTRACT

Acquired hearing loss, which can develop after noise insult or ototoxic drug treatment, is a significant clinical, social, and economic issue. A major advance in our understanding came with the discovery that intense metabolic activity in the inner ear drives the formation of free radicals (short-lived, unstable, highly reactive clusters of atoms) in multiple types of cells in the inner ear after both noise and drug insult. Animal studies have now shown that free radicals formed during and after metabolic stress importantly contribute to acquired hearing loss. These new mechanistic insights provided for the first time a rationale for directly treating the inner ear to prevent hearing impairment. Consequently, use of free radical scavengers, or antioxidants, to prevent acquired hearing loss became a clinically relevant research goal. Many laboratories have now demonstrated that a variety of free radical scavengers reduce the potential for acquired hearing loss in animal subjects. Scientific data, supporting the use of these agents to prevent environmentally acquired hearing loss, is reviewed. Translational investigations are now essential to confirm the potential utility of these agents in the human inner ear. This article reviews the pharmacological otoprotective agents in or approaching clinical trials to prevent noise-, aminoglycoside-, and cisplatin-induced hearing loss.

REFERENCES

  • 1 Le Prell C G, Bao J. Prevention of noise-induced hearing loss: potential therapeutic agents, in Noise-induced hearing loss: Scientific advances, Springer Handbook of Auditory Research, Le Prell CG, Henderson D, Fay RR, Popper AN, Eds. New York, NY: Springer Science Business Media, LLC; 2011: 285-338
  • 2 Chow C K, Ibrahim W, Wei Z, Chan A C. Vitamin E regulates mitochondrial hydrogen peroxide generation.  Free Radic Biol Med. 1999;  27 580-587
  • 3 Pierson M G, Gray B H. Superoxide dismutase activity in the cochlea.  Hear Res. 1982;  6 141-151
  • 4 Ohlemiller K K, McFadden S L, Ding D L et al.. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.  Audiol Neurootol. 1999;  4 237-246
  • 5 McFadden S L, Ohlemiller K K, Ding D, Shero M, Salvi R J. The influence of superoxide dismutase and glutathione peroxidase deficiencies on noise-induced hearing loss in mice.  Noise Health. 2001;  3 49-64
  • 6 Ravi R, Somani S M, Rybak L P. Mechanism of cisplatin ototoxicity: antioxidant system.  Pharmacol Toxicol. 1995;  76 386-394
  • 7 Takumida M, Anniko M, Popa R. Possible involvement of free radicals in lipopolysaccharide-induced labyrinthitis in the guinea pig: a morphological and functional investigation.  ORL J Otorhinolaryngol Relat Spec. 1998;  60 246-253
  • 8 Rybak L P, Husain K, Morris C, Whitworth C, Somani S. Effect of protective agents against cisplatin ototoxicity.  Am J Otol. 2000;  21 513-520
  • 9 Sha S H, Schacht J. Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant.  Hear Res. 2000;  142 34-40
  • 10 Sha S H, Taylor R, Forge A, Schacht J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals.  Hear Res. 2001;  155 1-8
  • 11 Sha S H, Zajic G, Epstein C J, Schacht J. Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss.  Audiol Neurootol. 2001;  6 117-123
  • 12 Klemens J J, Meech R P, Hughes L F, Somani S, Campbell K C. Antioxidant enzyme levels inversely covary with hearing loss after amikacin treatment.  J Am Acad Audiol. 2003;  14 134-143
  • 13 McFadden S L, Ding D, Salvemini D, Salvi R J. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity.  Toxicol Appl Pharmacol. 2003;  186 46-54
  • 14 Kawamoto K, Sha S H, Minoda R et al.. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity.  Mol Ther. 2004;  9 173-181
  • 15 Husain K, Whitworth C, Somani S M, Rybak L P. Partial protection by lipoic acid against carboplantin-induced ototoxicity in rats.  Biomed Environ Sci. 2005;  18 198-206
  • 16 Konings A, Van Laer L, Pawelczyk M, Carlsson P I, Bondeson M L, Rajkowska E. Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations.  Hum Mol Genet. 2007;  16 1872-1883
  • 17 Yildirim I, Kilinc M, Okur E, Inanc Tolun F, Kilic M A, Kurutas E B et al.. The effects of noise on hearing and oxidative stress in textile workers.  Ind Health. 2007;  45 743-749
  • 18 Rybak L P, Whitworth C, Somani S. Application of antioxidants and other agents to prevent cisplatin ototoxicity.  Laryngoscope. 1999;  109 1740-1744
  • 19 Todt I, Ngezahayo A, Ernst A, Kolb H A. Inhibition of gap junctional coupling in cochlear supporting cells by gentamicin.  Pflugers Arch. 1999;  438 865-867
  • 20 Usami S, Hjelle O P, Ottersen O P. Differential cellular distribution of glutathione—an endogenous antioxidant—in the guinea pig inner ear.  Brain Res. 1996;  743 337-340
  • 21 Kil J, Pierce C, Tran H, Gu R, Lynch E D. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase.  Hear Res. 2007;  226 44-51
  • 22 Ohlemiller K K, McFadden S L, Ding D L, Lear P M, Ho Y S. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice.  J Assoc Res Otolaryngol. 2000;  1 243-254
  • 23 Stebbins W C, Hawkins Jr J E, Johnson L G, Moody D B. Hearing thresholds with outer and inner hair cell loss.  Am J Otolaryngol. 1979;  1 15-27
  • 24 Choung Y H, Taura A, Pak K, Choi S J, Masuda M, Ryan A F. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin.  Neuroscience. 2009;  161 214-226
  • 25 Clerici W J, Hensley K, DiMartino D L, Butterfield D A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants.  Hear Res. 1996;  98 116-124
  • 26 Clerici W J, Yang L. Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function.  Hear Res. 1996;  101 14-22
  • 27 Clerici W J, DiMartino D L, Prasad M R. Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro.  Hear Res. 1995;  84 30-40
  • 28 Jiang H, Sha S H, Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity.  J Neurosci Res. 2005;  79 644-651
  • 29 Basappa J, Turcan S, Vetter D E. Corticotropin-releasing factor-2 activation prevents gentamicin-induced oxidative stress in cells derived from the inner ear.  J Neurosci Res. 2010;  88 2976-2990
  • 30 Le Prell C G, Yamashita D, Minami S, Yamasoba T, Miller J M. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention.  Hear Res. 2007;  226 22-43
  • 31 Jiang H, Sha S H, Forge A, Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo.  Cell Death Differ. 2006;  13 20-30
  • 32 Jiang H, Sha S H, Schacht J. Rac/Rho pathway regulates actin depolymerization induced by aminoglycoside antibiotics.  J Neurosci Res. 2006;  83 1544-1551
  • 33 Poirrier A L, Van den Ackerveken P, Kim T S, Vandenbosch R, Nguyen L, Lefebvre P P, Malgrange B. Ototoxic drugs: difference in sensitivity between mice and guinea pigs.  Toxicol Lett. 2010;  193 41-49
  • 34 Rybak L P, Whitworth C A, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention.  Hear Res. 2007;  226 157-167
  • 35 Dehne N, Lautermann J, Petrat F, Rauen U, de Groot H. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals.  Toxicol Appl Pharmacol. 2001;  174 27-34
  • 36 González-García J A, Nevado J, García-Berrocal J R, Sanchez-Rodriguez C, Trinidad A, Sanz R, Ramirez-Camacho R. Endogenous protection against oxidative stress caused by cisplatin: role of superoxide dismutase.  Acta Otolaryngol. 2010;  130 453-457
  • 37 Rybak L P, Husain K, Whitworth C, Somani S M. Dose dependent protection by lipoic acid against cisplatin-induced ototoxicity in rats: antioxidant defense system.  Toxicol Sci. 1999;  47 195-202
  • 38 Oldenburg J, Kraggerud S M, Cvancarova M, Lothe R A, Fossa S D. Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors.  J Clin Oncol. 2007;  25 708-714
  • 39 Palodetto B, Postal M, Grignoli C R, Sartorato E L, Oliveira C A. Influence of glutathione s-transferase on the ototoxicity caused by aminoglycosides.  Braz J Otorhinolaryngol. 2010;  76 306-309
  • 40 Cotanche D A, Lee K H, Stone J S, Picard D A. Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage.  Anat Embryol (Berl). 1994;  189 1-18
  • 41 Niemiec A J, Raphael Y, Moody D B. Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail.  Hear Res. 1994;  79 1-16
  • 42 Cotanche D A. Structural recovery from sound and aminoglycoside damage in the avian cochlea.  Audiol Neurootol. 1999;  4 271-285
  • 43 Stone J S, Cotanche D A. Hair cell regeneration in the avian auditory epithelium.  Int J Dev Biol. 2007;  51 633-647
  • 44 Slattery E L, Warchol M E. Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear.  J Neurosci. 2010;  30 3473-3481
  • 45 Kopke R D, Coleman J K, Liu J, Campbell K C, Riffenburgh R H. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.  Laryngoscope. 2002;  112 1515-1532
  • 46 Korver K D, Rybak L P, Whitworth C, Campbell K C. Round window application of D-methionine provides complete cisplatin otoprotection.  Otolaryngology-Head Neck Surgery. 2002;  126 683-689
  • 47 Campbell K C, Meech R P, Klemens J J et al.. Prevention of noise- and drug-induced hearing loss with D-methionine.  Hear Res. 2007;  226 92-103
  • 48 Samson J, Wiktorek-Smagur A, Politanski P et al.. Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine.  Neuroscience. 2008;  152 146-150
  • 49 Cheng P W, Liu S H, Young Y H, Hsu C J, Lin-Shiau S Y. Protection from noise-induced temporary threshold shift by D-methionine is associated with preservation of ATPase activities.  Ear Hear. 2008;  29 65-75
  • 50 Campbell K C, Rybak L P, Meech R P, Hughes L. D-methionine provides excellent protection from CDDP ototoxicity in the rat.  Hear Res. 1996;  102 90-98
  • 51 Campbell K C, Meech R P, Rybak L P, Hughes L F. D-methionine protects against cisplatin damage to the stria vascularis.  Hear Res. 1999;  138 13-28
  • 52 Campbell K C, Meech R P, Rybak L P, Hughes L F. The effect of D-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection.  J Am Acad Audiol. 2003;  14 (3) 144-156
  • 53 Vuyyuri S B, Hamstra D A, Khanna D et al.. Evaluation of D-methionine as a novel oral radiation protector for prevention of mucositis.  Clin Cancer Res. 2008;  14 2161-2170
  • 54 Hamstra D A, Eisbruch A, Naidu M U et al.. Pharmacokinetic analysis and phase 1 study of MRX-1024 in patients treated with radiation therapy with or without cisplatinum for head and neck cancer.  Clin Cancer Research. 2010;  16 (9) 2666-2766
  • 55 Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L. D-Methionine (D-met) Significantly Rescues Noise Induced Hearing Loss: Timing Studies.  Hear Res.. 2011;  282 (1–2) 138-144
  • 56 Le Prell C G, Hughes L F, Miller J M. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma.  Free Radic Biol Med. 2007;  42 1454-1463
  • 57 Le Prell C G, Dolan D F, Bennett D C, Boxer P A. Nutrient treatment and achieved plasma levels: reduction of noise-induced hearing loss at multiple post-noise test times.  Transl Res. 2011;  158 54-70
  • 58 Le Prell C G, Gagnon P M, Bennett D C, Ohlemiller K K. Nutrient enhanced diet reduces noise-induced damage to the inner ear and hearing loss.  Transl Res. 2011;  158 38-53
  • 59 Omenn G S. Chemoprevention of lung cancer: the rise and demise of beta-carotene.  Annu Rev Public Health. 1998;  19 73-99
  • 60 Omenn G S. Chemoprevention of lung cancers: lessons from CARET, the beta-carotene and retinol efficacy trial, and prospects for the future.  Eur J Cancer Prev. 2007;  16 (3) 184-191
  • 61 Pourbakht A, Yamasoba T. Ebselen attenuates cochlear damage caused by acoustic trauma.  Hear Res. 2003;  181 100-108
  • 62 Lynch E D, Gu R, Pierce C, Kil J. Ebselen-mediated protection from single and repeated noise exposure in rat.  Laryngoscope. 2004;  114 333-337
  • 63 Yamasoba T, Pourbakht A, Sakamoto T, Suzuki M. Ebselen prevents noise-induced excitotoxicity and temporary threshold shift.  Neurosci Lett. 2005;  380 234-238
  • 64 Lynch E D, Kil J. Compounds for the prevention and treatment of noise-induced hearing loss.  Drug Discov Today. 2005;  10 1291-1298
  • 65 Ohinata Y, Miller J M, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.  Brain Res. 2003;  966 265-273
  • 66 Lorito G, Giordano P, Petruccelli J, Martini A, Hatzopoulos S. Different strategies in treating noise induced hearing loss with N-acetylcysteine.  Med Sci Monit. 2008;  14 BR159-164
  • 67 Coleman J K, Kopke R D, Liu J, Ge X, Harper E A, Jones G E et al.. Pharmacological rescue of noise induced hearing loss using N-acetylcysteine and acetyl-L-carnitine.  Hear Res. 2007;  226 104-113
  • 68 Bielefeld E C, Kopke R D, Jackson R L, Coleman J K, Liu J, Henderson D. Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration.  Acta Otolaryngol. 2007;  127 914-919
  • 69 Fetoni A R, Ralli M, Sergi B, Parrilla C, Troiani D, Paludetti G. Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs.  Acta Otorhinolaryngol Ital. 2009;  29 70-75
  • 70 Duan M, Qiu J, Laurell G, Olofsson A, Counter S A, Borg E. Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma.  Hear Res. 2004;  192 1-9
  • 71 Hamernik R P, Qiu W, Davis B. The effectiveness of N-acetyl-L-cysteine (L-NAC) in the prevention of severe noise-induced hearing loss.  Hear Res. 2008;  239 99-106
  • 72 Kopke R D, Weisskopf P A, Boone J L et al.. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla.  Hear Res. 2000;  149 138-146
  • 73 Kopke R D, Coleman J K, Huang X et al.. 2001. Novel strategies to prevent and reverse noise-induced hearing loss. In: Henderson D, Prasher D, Kopke R, Salvi R J, Hamernik R, eds. Noise induced hearing loss: basic mechanisms, prevention and control. Noise Research Network, London
  • 74 Yu N, Li X, Hu B. The effects of salicylate on noise-induced hearing loss in the guinea pig.  Zhonghua Er Bi Yan Hou Ke Za Zhi. 1999;  34 (6) 344-346
  • 75 Kopke R, Bielefeld E, Liu J et al.. Prevention of impulse noise-induced hearing loss with antioxidants.  Acta Otolaryngol. 2005;  125 235-243
  • 76 Kopke R D. NAC for Noise: From the bench to the clinic.  Paper presented at: International Symposium-Pharmacologic Strategies for Prevention and Treatment of Hearing Loss and Tinnitus; October 10, 2005; Niagara Falls, Ottawa, Canada
  • 77 Kopke R D, Jackson R L, Coleman J K et al.. NAC for noise: from the bench top to the clinic.  Hear Res. 2007;  226 114-125
  • 78 Toppila E, Starck J, Pyykko I, Miller J M. Protection against acute noise with antioxidants.  Presented at Nordic Noise: An International Symposium on Noise and Health, in Nobel Forum; 2002; Karolinska Institutet, Stockholm, Sweden
  • 79 Kramer S, Dreisbach L, Lockwood J et al.. Efficacy of the antioxidant N-acetylcysteine (NAC) in protecting ears exposed to loud music.  J Am Acad Audiol. 2006;  17 265-278
  • 80 Clifford R E, Coleman J K, Balough B J et al.. Low dose D-methionine and N-acetylcysteine for protection from permanent noise-induced hearing loss in chinchillas.  Otolaryngol Head Neck Surg. 2011;  145 (6) 999-1006
  • 81 Sha S H, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity.  Lab Invest. 1999;  79 (7) 807-813
  • 82 Chen Y, Huang W G, Zha D J, Qiu J H et al.. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic.  Hear Res. 2007;  226 (1–2) 178-182
  • 83 Behnoud F, Davoudpur K, Goodarzi MT. Can aspirin protect or at least attenuate gentamicin ototoxicity in humans?.  Saudi Med J. 2009;  30 (9) 1165-1169
  • 84 Herr L, Koirala J, Campbell K, Starks S. Khardori, N. D-methionine Does Not Interfere With Antimicrobial Effectiveness.  Abstracts of the Infectious Disease Society of America conference in San Francisco, California in October, 2001, p. 457
  • 85 Conlon B J, Aran J M, Erre J P, Smith D W. Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid.  Hear Res. 1999;  128 40-44
  • 86 Sinswat P, Wu W, Sha S, Schacht J. Protection from ototoxicity of intraperitoneal gentamicin in guinea pig. Kidney Int.  2000;  58 (6) 2525-2532
  • 87 Conlon B J, Smith D W. Topical aminoglycoside ototoxicity: attempting to protect the cochlea.  Acta Otolaryngol. 2000;  120 (5) 596-599
  • 88 Song B, Sha S, Schacht J. Iron chelators protect from aminoglycoside-induced cochleo-and vestibulo-toxicity.  Free Radic Biol Med. 1998;  25 (2) 189-195
  • 89 Conlon B, Perry B, Smith D. Attenuation of neomycin ototoxicity by iron chelation.  The Laryngoscope. 1998;  108 284-287
  • 90 Dehne N, Rauen U, deGroot H, Lautermann J. Involvement of the mitochondrial permeability transition in gentamicin ototoxicity.  Hear Res. 2002;  169 47-55
  • 91 Kanno H, Yamanobe S, Rybak L P. The ototoxicity of deferoxamine mesylate.  Am J Otolaryngol. 1995;  16 148-152
  • 92 Ryals B, Westbrook A, Schacht J. Morphological evidence of ototoxicity of the iron chelator deferoxamine.  Hear Res. 1997;  112 44-48
  • 93 Pirvola U, Xing-Qun L, Virkkala J et al.. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT 7515, an inhibitor of c-Jun N-terminal kinase activation.  J Neurosci. 2000;  20 (1) 43-50
  • 94 Wang J, Van De Water T R, Bonn C, de Pibaupierre F, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects aginst both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss.  Journal of Neuroscience. 2003;  23 8596-8607
  • 95 Cheng A G, Cunningham L L, Ruble E W. Hair cell death in the avian basilar papilla: characterization of the in vitro model and caspase activation.  JARO. 2002;  4 91-105
  • 96 Zheng J L, Gao W. Differential damage to auditory neurons in hair cells by ototoxins and protection by specific neurotrophins and cochlear organotypic cultures.  Eur J Neurosci. 1996;  8 1897-1905
  • 97 Duan M, Agerman K, Ernfors P, Canlon B. Complementary roles of neurotrophin 3 and a N-methyl-D- aspartate antagonist in the protection of noise and aminoglycoside induced ototoxicity.  PNAS 97. 2000;  (13) 7597-7602
  • 98 Ernfors P, Li Duan M, El Shamy W, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3.  Nat Med. 1996;  2 (4) 463-467
  • 99 Suzuki M, Yagi M, Brown J N, Miller A L, Rafael Y. Effect of transgenic GDNF expression and gentamicin-induced cochlear and vestibular toxicity.  Gene Therapy. 2000;  7 1046-1054
  • 100 Yagi M, Magal E, Sheng Z, Ang K, Raphael Y. Hair cell protection for aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line- derived neurotrophic factor.  Hum Gene Ther. 1999;  10 813-823
  • 101 Otto W C, Brown R D, Gage-White L et al.. Effects of cisplatin and thiosulfate upon auditory brainstem responses of guinea pigs.  Hear Res. 1988;  35 (1) 79-85
  • 102 Jones M M, Basinger M A, Holscher M A. Relative effectiveness of some compounds for the control of cisplatin-induced nephrotoxicity.  Toxicology. 1991;  68 (3) 227-247
  • 103 Church M W, Kaltenbach J A, Blakley B W, Burgio D L. The comparative effects of sodium thiosulfate, deithyldithiocarbamate, fosfomycin and WR-2712 on ameliorating cisplatin-induced ototoxicity.  Hear Res. 1995;  86 (1–2) 195-203
  • 104 Muldoon L L, Pagel M A, Kroll R A et al.. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity.  Clin Cancer Res. 2000;  6 (1) 309-315
  • 105 Dickey D T, Wu Y J, Muldoon L L, Neuwelt E A. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular and in vivo levels.  J Pharmacol Exp Ther. 2005;  314 (3) 1052-1058
  • 106 Harned T M, Kalous O, Neuwelt A et al.. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity.  Clin Cancer Res. 2008;  14 (2) 533-540
  • 107 Stocks M R, Gould H U, Bush A J, Dudney Jr B W, Pousson M, Thomspson J W. Ototoxic protection of sodium thiosulfate:daily vs constant infusion.  Otolaryngol Head Neck Surg. 131 (1) 115-119
  • 108 Wimmer C, Mees K, Stumpf P, Wesch U, Reichel O, Suckfüll M. Round window application of D-methionine, sodium thiosulfate, brain-derived neurotrophic factor, and fibroblast growth factor-2 in cisplatin-induced ototoxicity.  Otol Neurotol. 2004;  25 (1) 33-40
  • 109 Cappaert N L, Klis S F, Wifbenga J, Smoorenburg G F. Acceleration of cisplatin ototoxicity by perilymphatic application of 4-methylthiobenzoic acid.  Hear Res. 2005;  203 (1–2) 80-87
  • 110 Zuur C L, Simis Y J, Lansdall P E et al.. Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer.  J Clin Oncol. 2007;  25 (24) 3759-3765
  • 111 Markman M, D'Acquisto R, Iannotti N et al.. Phase-1 trial of high-dose intravenous cisplatin with simultaneous intravenous sodium thiosulfate.  J Cancer Res Clin Oncol. 1991;  117 (2) 151-155
  • 112 Reichman B, Markman M, Hakes T et al.. Phase II trial of high-dose cisplatin with sodium thiosulfate nephroprotection in patients with advanced carcinoma of the uterine cervix previously untreated with chemotherapy.  Gynecol Oncol. 1991;  43 (2) 159-163
  • 113 Kim S, Howell S B, McClay E et al.. Dose intensification of cisplatin chemotherapy through biweekly administration.  Ann Oncol. 1993;  4 (3) 221-227
  • 114 Van Rijswijk R E, Hoekman K, Burger C W, Verheijen R H, Vermorken J B. Experience with intraperitoneal cisplatin and etoposide and i.v. sodium thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease.  Ann Oncol. 1997;  8 (12) 1235-1241
  • 115 Blakley B W, Cohen J I, Doolittle N D et al.. Strategies for Prevention of Toxicity Caused by platinum based chemotherapy: review and summary of the annual meeting of the Blood-Brain Barrier Disruption Program, Gleneden Beach, Oregon, March 10, 2001.  Laryngoscope. 112 1997-2001
  • 116 Neuwelt E A, Gilmer-Knight K, Lacy C, Nicholson H S, Kraemer D F, Doolittle N D. Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption.  Pediatr Blood Cancer. 2006;  47 (2) 174-182
  • 117 Lockwood D S, Ding D L, Wang J, Salvi R J. D-Methionine attenuates inner hair cell loss in carboplatin-treated chinchillas.  Audiol Neurootoal. 2000;  5 (5) 263-266
  • 118 Cheng P W, Liu S H, Hsu C J, Lin-Shiau S Y. Correlation of increased activities of Na+,K+-ATPase and Ca2+-ATPase with the reversal of cisplatin ototoxicity induced by D-methionine in guinea pigs.  Hear Res. 2005;  205 (1–2) 102-109
  • 119 Giordano P, Lorito G, Ciorba A, Martini A, Hatzopoulos S. Protection against cisplatin ototoxicity in a Sprague-Dawley rat animal model.  Acta Otorhinolaryngol Ital. 2006;  26 (4) 198-207
  • 120 Theneshkumar S, Lorito G, Giordano P, Petruccelli J, Martini A, Hatzopoulos S. Effect of noise conditioning on cisplatin-induced ototoxicity: a pilot study Med Sci Monit.  2009;  15 (7) BR173-177
  • 121 Cloven N G, Re A, McHale M et al.. Evaluation of D-methionine as a cytoprotectant in cisplatin treatment of an animal model for ovarian cancer.  Anti Cancer Research. 2000;  20 4205-4209
  • 122 Campbell K C, Nayar R, Borgonha S, Hughes L F, Ross B, Sunkara P. Oral D-methionine significantly protects against cisplatin induced hearing loss in humans. Association for Research in Otolaryngology, Baltimore, MD 2009; Abstracts of the Thirty Second Annual Midwinter Research Meeting of the Association for Research in Otolarynogology Vol. 32, pg. 7 abstract #22 Mt. Royal, NJ: Association for Research in Otolaryngology;
  • 123 Kopke R D, Liu W, Gabaizadeh R et al.. Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells.  Am J Otol. 1997;  18 (5) 559-571
  • 124 Lynch E D, Gu R, Pierce C, Kil J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen.  Hear Res. 2005;  20 (1–2) 81-89
  • 125 Lynch E D, Gu R, Pierce C, Kil J. Combined oral delivery of ebselen and allopurinol reduces multiple cisplatin toxicities in rat breast and ovarian cancer models while enhancing anti-tumor activity.  Anticancer Drugs. 2005;  16 569-579
  • 126 Hensley M L, Hagerty K L, Kewalramani T et al.. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants.  2009;  27 (1) 127-145

Kathleen C.M. CampbellPh.D. 

Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, Audiology Research, Southern Illinois University School of Medicine

P.O. Box 19629, Springfield, IL 62536

Email: kcampbell@siumed.edu

    >